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Preface

Distributed, localized energy grids and also smart grids are an important emerging
topic in the energy domain, especially to support the growing amount of renewable
energy production sources. Today, most of these are organized in large solar or wind
parks, but the domestic market share is rapidly growing too. Without such more
distributed and even smart grids, the traditional regional energy grids will not be
able to cope with the growing renewable content.

In this book we provide an overview of the results of a broad university collabo-
ration addressing this emerging topic, including also the related work comparison.
To our knowledge, today no comprehensive book focuses on this content, and we
believe now is the time to fill that gap.

In addition, we have many promising and quite consolidated results from our
consortium research activities from the past decade. These have been published as
individual contributions in point papers but never with the embedding in the overall
context and goals of our collaborative project. So this book is the first public way
to disseminate that overall holistic vision. It also shows how this work is situated in
the existing related work, and how it differentiates from that.

Several unique aspects are present in our research methodologies and approach.
The short-term wind and PV forecasting techniques are based on physics-based
modeling, which has allowed us to obtain unprecedented accuracy levels within
reasonable run-times, compatible with online monitoring and forecasting as needed
for smart grids.

The HVAC load modeling and forecasting is based on a fully up-scalable
approach including aggregation techniques and with the focus on obtaining high
accuracy without requiring much (typically not available) local information on the
HVAC installation.

The overall energy management framework combining renewable production,
HVAC loads, and battery storage is based on multiple time-scales. This unique
approach has enabled to arrive at near-Pareto-optimal working points, with again
reasonable run-times on embedded processing platforms.

The book is organized in five chapters.

v



vi Preface

Chapter 1 provides the overall vision and the holistic approach. It also puts our
work in a global context.

Chapter 2 focuses on PV energy yield modeling specifically for distributed
localized energy grids. PV energy yield modeling is conducted with respect to the
special characteristics, constraints, and limitations of distributed localized energy
grids. It addresses short-term PV energy yield forecasting (minutes to hours ahead).
It highlights the most important features of short-term forecasting horizons (e.g.,
fine-grained resolution, sky images, global optimization).

Chapter 3 does the same for wind turbine energy yield forecasting.
Chapter 4 introduces a load modeling and management framework that takes into

consideration energy/cost availability from renewable sources in order to decide
upon future actions (e.g., refine cooling/heating strategy). It evaluates alternative
considerations for historical weather data in order to decide upon optimum (in terms
of energy consumption and thermal comfort) configuration of the HVAC system. It
also considers aspects related with the implementation of a control system as part
of a low-cost embedded device (deep-edge device).

Chapter 5 provides an overview of our multi-timescale energy management
approach. That framework considers the balancing of renewable energy production
and consumption by loads. But it also integrates battery storage operation, power
purchases from the regular grid, and aggregation of appliance usage. It addresses
the challenges of maintaining energy balance and reducing electricity costs in smart
PV systems due to the unpredictability and fast variation of renewable energy
generation.

We would like to acknowledge the contribution of the many colleagues who
have contributed to the research we have summarized in this book. We deeply
appreciative the collaboration in the past with the renewable energy research groups
at imec, Leuven and Genk, Belgium; at Osaka University, Japan; at NTUAthens,
Greece; and at EnergyVille and KULeuven, Belgium.

We extend our heartfelt thanks to the past cooperation with all colleagues in
our collaboration network, especially with Hans Goverde, Patrizio Manganiello, Eli
Shirazi, Lieve Helsen, Johan Driesen, Geert Deconinck, Jef Poortmans, Toshihiro
Suzuki, Yoshiyuki Shimoda, Kenshiro Kato, and Koki Iwabuchi.
The research in this book is partly supported by the Japan Society for the Promotion
of Science (21J10312, 22H03697, 24K20901), Daikin Industries, Ltd., next to our
own organizations.

October 2024 The book and chapter authors



Contents

1 Motivation, Focus and Contributions of This Book . . . . . . . . . . . . . . . . . . . . . . 1
Francky Catthoor, Ittetsu Taniguchi, Dafang Zhao, Kostas Siozios,
Pavlos S. Georgilakis, and Andreas Kazantzidis

2 Accurate PV Energy Yield Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Markos A. Kousounadis-Knousen, Dimitris Anagnostos,
Ioannis K. Bazionis, Apostolos Bakovasilis, Pavlos S. Georgilakis,
and Francky Catthoor

3 Accurate Energy Yield Forecasting for Wind Turbine Parks . . . . . . . . . . . 35
Dimitris Michos, Andreas Kazantzidis, Markos A. Kousounadis-
Knousen, Ioannis K. Bazionis, Pavlos S. Georgilakis, Michael Daenen,
and Francky Catthoor

4 Online HVAC Control for Energy Efficiency and Thermal Comfort . . 59
Charalampos Marantos, Christos Sad, Kostas Siozios,
and Dimitrios Soudris

5 Multi-Timescale Energy Management Framework . . . . . . . . . . . . . . . . . . . . . . 77
Daichi Watari, Dafang Zhao, Ittetsu Taniguchi, and Francky Catthoor

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

vii



Acronyms

ANN Artificial Neural Network
AS Appliance Scheduling
CC Cloud Class
CGEM Coarse-Grained Energy Management
CMM Cloud Motion Modeling
CMV Cloud Motion Vector
CRPS Continuous Ranked Probability Score
CWC Coverage Width Criterion
DRED Dutch Residential Energy Dataset
ELM Extreme Learning Machine
Eyield Energy yield
EMS Energy Management System
FGEM Fine-Grained Energy Management
GSI Ground-based Sky Image
HEMS Home Energy Management System
HVAC Heating, Ventilation, and Air Conditioning
LSTM Long Short-Term Memory
LUBE Lower Upper Bound Estimation
MCKP Multiple Choice Knapsack Problem
MCT Multi-Color Threshold
MIP Mixed Integer Programming
MINLP Mixed-Integer Non-Linear Programming
MPC Model Predictive Control
MSE Mean Squared Error
NARX Non-linear Autoregressive Network with eXogenous inputs
NLP Non-Linear Programming
NWP Numerical Weather Prediction
PID Proportional-Integral-Derivative
PI Prediction Interval
PICP Prediction Interval Coverage Probability
PINRW Prediction Interval Normalized Root Width

ix



x Acronyms

PPD Predicted Percentage of Dissatisfied
PV Photovoltaic
PVPP Photovoltaic Power Plant
RF Random Forest
RMSE Root Mean Squared Error
SAMURAI Simulated Annealing Module with Update Range of moves, Adaptive

annealing schedule, and Inner-loop criterion
SOC State-Of-Charge
TOU Time-Of-Use
WF Wind Farm
WPD Wavelet Packet Decomposition
WPPF Wind Power Probabilistic Forecasting
WT Wind Turbine



Chapter 1 
Motivation, Focus, and Contributions 
of This Book 

Francky Catthoor, Ittetsu Taniguchi, Dafang Zhao, Kostas Siozios, 
Pavlos S. Georgilakis, and Andreas Kazantzidis 

1.1 Smart Energy Systems 

With the increasing emphasis on and growth of environmental awareness in society, 
a large amount of renewable energy such as solar and wind power have been intro-
duced to demand-side consumers to reduce CO2 .emissions and electricity costs [16]. 
However, renewable energy is intermittent and uncontrollable, and its generation 
fluctuates in the short term due to various environmental factors, especially due 
to strong variation in wind speed, cloud movement, and local temperature. This 
fluctuation nature will inevitably cause supply-demand mismatches [9]. To address 
this issue, a smart energy system, which integrates renewable energy production and 
demand control, including temporary energy storage like batteries, will make such 
systems energy-efficient, more resilient, and significantly more eco-friendly [10]. 
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1.2 Energy Management Systems 

Several key technologies have to be hence combined in these smart energy systems. 
The main one is a global energy management system (EMS) to manage the balance 
of energy in real time among renewable generation, appliances, battery systems, 
and electricity purchases [4]. The EMS aims to improve several criteria, including 
minimizing electricity costs, reducing demand peaks, and maximizing the self-
sufficiency rate of renewable sources [11]. A major requirement is to be run-time 
efficient, as we do not want to execute this on cloud servers due to the necessity 
to provide online real-time control. And the cost for the power plant owner or the 
local community should be reasonable so compute platforms like the well-known 
Raspberry Pi [14] are more appropriate to use in this context than local servers 
which are powerful but more costly to purchase and to maintain. 

So in order to create this run-time efficiency, we have introduced multiple 
concurrently applied timescales with dedicated solvers at each of these scales. In 
real-time energy management, the fluctuation of renewable generation such as wind 
turbine and photovoltaic (PV) systems causes severe energy loss and imbalances. 
The time constant involved in those is subsecond. So at the fastest timescale in our 
EMS framework, we work with a resolution of 1 second to effectively deal with 
those fluctuations. Concurrently, at slower timescales with a resolution of 15–30 
minutes, scheduling distributed energy resources (DERs) such as a battery storage 
system and a multitude of shiftable appliances is important to shift energy demand 
from peak to off-peak hours and to reduce electricity costs. To fill the gap between 
fast and slow timescales in energy management, our framework provides the 
glue between these scales, and it repeatedly solves three consecutive optimization 
problems at certain time intervals. This multi-time scale organization significantly 
reduces computational complexity while maintaining excellent solution quality. 

More information on our proposed approach for this is provided in Chap. 5. 

1.3 Renewable Energy Yield Modeling and Prediction 

However, the unpredictable and short-term fluctuations of renewable sources will 
negatively impact the performance of the EMS [13]. It is hence of paramount 
importance to reduce the errors in predicting the energy yield (Eyield) at all 
the timescales needed within the EMS. That is a daunting challenge because the 
environmental monitors usually have significant noise related to their operation, and 
it is very common to have missing sample points during their usage, which adds to 
the uncertainty. Moreover, the weather models are known to have a large amount of 
uncertainty when forecasting the future evolution. 

In order to reduce the impact of these noise and uncertainty contributions, we 
have employed several effective counter measures:
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1. It is well-known that both for photovoltaic (PV) modules and wind turbines, the 
errors in longer time periods (at least 1 hour ahead) are strongly averaging out, 
so the positive and negative impact largely cancel each other. That property has 
been effectively exploited in the literature on hour(s)-ahead forecast methods 
[3, 5]. So also in our mid-term Eyield forecasts, we do rely on this heavily; see 
Chap. 2 for more details on the PV production and Chap. 3 for the wind turbine 
option. Both of these approaches are based on empirical base models which are 
optimized exploiting state-of-the-art machine learning techniques. 

2. But for the (ultra-)short-term forecasts which are minutes ahead, this averaging 
out property is not usable yet, so instead we rely on accurate physics-based 
modeling foundations. It is crucial then to incorporate all relevant dimensions. 
For the wind turbines, these are mostly the wind field which is heavily impacted 
by the terrain. For the PV modules, next to the electrical and optical aspects, 
sufficient care should be taken for modeling the local wind and temperature 
profiles. For the longer timescales, this would not be feasible because of 
exploding run-times, but for a few minutes up to (a maximum of) 30 minutes 
ahead prediction, our earlier research has shown that this is practically achievable 
even on cheap compute platforms like the earlier mentioned Raspberry Pi. More 
details on this are again found in Chap. 2 for the PV production and Chap. 3 for 
the wind turbine option. 

The main advantage of these physics-based models is that they can reliably 
handle extrapolations because the trends are accurately incorporated. Based on 
these equations, it is also possible to represent correlations which are present in 
all these real renewable energy installations. It is well-known that noise sources 
and other fluctuations are mostly uncorrelated, so by using the proper techniques, 
it is then even feasible to recover useful information which is close to or even 
partly hidden below the average noise level! With these powerful techniques, our 
final accuracy levels are surprisingly high, even on days with strongly variable 
weather. They do still require a proper initial calibration for the installation in the 
site at hand. But for that purpose, modern machine learning algorithms are a big 
help to improve the accuracy of that calibration phase. 

3. An additional method to improve the mid-term forecasts is to incorporate 
probabilistic modeling to provide bounds. Many of these are based on prediction 
intervals (PIs) and we have further improved those. Also more detailed informa-
tion on this is provided in the respective chapters on PV and wind turbines. 

4. The machine learning techniques used in the state of the art typically rely on 
gradient-based foundations which are known to be (very) prone to becoming 
stuck in local optima. So in order to reduce that risk, we have complemented 
the Eyield predictions with hill-climbing techniques, like simulated annealing, 
genetic search, and swarm optimizers. These algorithms are traditionally very 
run-time demanding, but we have started to reduce that overhead, by introducing 
dynamically adapting versions, in particular for simulated annealing. More 
detailed information on all this is again provided in the respective chapters on 
PV and wind turbines.
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1.4 Demand-Side Modeling 

Another crucial component for the EMS is the modeling and prediction of the 
demand-side evolution in time. Today, the major contribution for households is 
what has been termed HVAC, i.e., heat, ventilation, and air-conditioning. But it is 
expected that also the amount of electrical vehicles (EV) will grow, so for the future 
it is certainly necessary to provide accurate models for that segment too. The other 
household appliances like washing machines are typically less demanding when 
aggregated over long periods. 

It is still a challenge to have access to public large databases which have collected 
realistic EV data over sufficiently long time traces and with a rich variation of 
usage patterns. Hence, in our approach we have mainly focused on the HVAC case 
up to now. Here, the aggregation aspect to effectively handle a huge amount of 
small individual contributions has been a crucial contribution. But we have also put 
significant effort to develop an approach which is both sufficiently accurate for our 
context and which is at the same time also very user-friendly. So it relies on very 
limited information to be provided by the site owners, and it can be considered as 
mostly a black-box model. This is in contrast to the potentially extremely accurate 
white-box modeling techniques in the literature which however also require a huge 
amount of calibration information of the building; see, e.g., [1]. More details on our 
approach can be found in Chap. 4. 

1.5 Temporary Energy Storage 

Another major way which is currently employed by the EMS to mitigate the 
environmental fluctuations is to install energy storage systems like large batteries. 
These can counter the temporary shortage or surplus of energy by the production 
side on a fast timescale [12]. However, they are quite costly and not environmentally 
friendly. Hence, it is crucial to reduce their need as much as possible. For this 
purpose we have worked on several countermeasures: 

1. It is anyway desirable to improve battery modeling and properly incorporate 
workload-dependent storage in the EMS [2, 15]. But the accuracy of state-of-the-
art modeling approaches is either too run-time consuming (for the physics-based 
options) or too poor (for the empirical models). So we have invested effort 
in providing a hybrid alternative which combines very good accuracy with 
acceptable run-time efficiency; see [17]. A summary is provided in Chap. 5. 

2. However, an even more effective way would be to introduce knobs at the 
production side. We have come up with a way to achieve this for PV modules 
by exploiting their strong temperature dependence. Our PV production knob 
proposal has been published in [7].
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1.6 Dynamic Pricing 

Another interesting and promising feature of smart energy systems is that one can 
potentially influence the demand side needs by so-called dynamic pricing [8]. This 
topic will not be incorporated in the book material, but we have worked on several 
approaches which are compatible with our overall EMS framework. More details 
can be found in [6]. 
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Chapter 2 
Accurate PV Energy Yield Forecasting 

Markos A. Kousounadis-Knousen, Dimitris Anagnostos, Ioannis K. Bazionis, 
Apostolos Bakovasilis, Pavlos S. Georgilakis, and Francky Catthoor 

In recent years, photovoltaic (PV) installations have recorded the highest yearly 
growth rates among renewable technologies. In 2023, the global cumulative PV 
capacity increased by nearly 450 GW, reaching a total of 1.6 TW. Continuous 
advancements in PV technologies have enhanced their cost-benefit ratio by reducing 
manufacturing costs while increasing solar cell efficiency. Furthermore, modern 
PV systems exhibit increased flexibility, which has led to a substantial growth in 
building-integrated small-scale PV installations. 

PV generation is characterized by high variability and volatility, mainly due 
to the presence and movement of cloud formations. [27]. Due to changes in the 
sky conditions, PV generation can drop by up to 70% in just a few seconds 
[6], while fluctuation frequencies can increase up to 1 Hz for PV modules with 
thinner glass [17]. These fluctuations can have severe effects on the operation of 
modern microgrids. Therefore, broader integration of PV systems necessitates the 
introduction of smart energy management systems (EMSs) [35],  which  in  turn  rely  
on accurate forecasts of PV generation.

Optimal EMSs include multiple timescales (see Chap. 5); thus, forecasts of 
PV generation need to be issued for different forecasting horizons. Figure 2.1 
illustrates the horizon-based classification of PV forecasting we propose, including 
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Fig. 2.1 Classification of PV power forecasting based on the forecasting horizon, along with 
preferred modeling approach, input data type, and output temporal resolution 

the preferred input type, modeling approach, and forecasting resolution. Minute-
scale forecasts enable specific real-time EMS operations, such as ramp rate control, 
demand balancing, and battery scheduling [4, 6]. 

Compared to the prevailing literature, we distinguish ourselves in two ways: 

1. Regarding the forecasting horizon, we adopt the classification used in [14]: 
intra-hour (short-term), intra-day (mid-term), and day-ahead (long-term). Longer 
forecasting horizons are omitted due to their decreased importance in the 
scheduling and operation of modern microgrids. 

2. Regarding the modeling approach, we consider physics-based models as the 
optimal choice for minute-scale modeling of PV generation. In such fine-
grained minute-scale or second-scale resolutions, the temporal averaging effect 
is negligible, resulting in increased variability. This is illustrated in Fig. 2.2,  in  
which a daily PV power curve is plotted for three different temporal resolutions. 
Physics-based models effectively respond to the highly dynamic conditions 
recorded in minute-scale resolutions. Section 2.1.2 provides more details about 
this consideration. However, due to their computationally intensive nature, we 
recommend the usage of physics-based models only for short-term forecasting 
horizons, for which the total number of forecasts can still be generated in 
reasonable run-times.
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Fig. 2.2 PV power generation of a 180W PV module in three different temporal resolutions, 
during a cloudy day 

2.1 Basic Principles of Short-Term PV Energy Yield 
Forecasting 

Minute-scale short-term PV energy yield (Eyield) forecasting is particularly chal-
lenging due to the reduced averaging effect when modeling at fine-grained tem-
poral resolutions. The forecasting challenge is further amplified for small-scale, 
distribution-level PV systems integrated into buildings and urban areas, for which 
the spatial smoothing effect is negligible. Efficient short-term PV Eyield forecasting 
requires careful consideration of the input type, the modeling approach and calibra-
tion, as well as the computational constraints. In this section, we briefly present the 
basic principles of minute-scale short-term PV Eyield forecasting. 

2.1.1 Ground-Based Sky Images 

The type of input data significantly affects the performance of minute-scale short-
term PV Eyield forecasting models. Ground-based Sky Images (GSIs) constitute 
the most important input type, as they provide a complete picture of the current 
sky condition at very high spatiotemporal resolutions. Furthermore, valuable insight 
into short-term cloud movement can be obtained by comparing several consecutive 
GSIs [7]. GSIs can be captured either by specialized camera setups called All Sky 
Imagers or by simple fish-eye-lensed surveillance cameras. The choice of the correct 
camera type depends on the forecasting setup requirements. Further information 
about different camera types and GSIs can be found in [25].



10 M. A. Kousounadis-Knousen et al.

PV generation can be accurately forecasted in the short term using GSIs as 
a stand-alone input option, without the need for on-site PV-related numerical 
measurements. However, we advocate combining GSIs with on-site PV-related 
numerical measurements to form hybrid input sets that encompass all necessary 
elements for accurate minute-scale short-term PV power forecasting. Common PV-
related numerical measurements include the incident solar irradiance, the ambient 
and module temperature, the wind speed and direction, as well as PV power itself. 
Basic preprocessing of GSIs is discussed in Sect. 2.3. 

2.1.2 Physics-Based PV Modeling 

Forecasting the output of small-scale distribution-level PV systems under fast-
varying weather conditions and minute-scale temporal resolutions necessitates 
detailed models that account for the optical, thermal, and electrical properties 
of PV cells [2]. Such a physics-based PV model was introduced in [19], and is 
abstractly presented in Fig. 2.3. Unlike most physics-based models, which typically 
incorporate only the electrical component of PV cells, the model introduced in 
[19] effectively couples optical, thermal, and electrical sub-models, to accurately 
calculate the Eyield of MWT PV modules even under non-steady state conditions 
and second-scale temporal resolutions. The optical component consists of a layer-
by-layer absorption model [19]. The illumination absorption rates of each layer 
are passed as inputs to the thermal and electrical components. Compared to the 
optical and thermal components, the electrical component is much easier to model 
accurately; thus, simple empirical equations based on the two-diode model are 
adequate. 

It is well-known that the efficiency of PV modules is directly affected by cell 
temperature. However, the thermal state of PV cells is often either overlooked or 
considered uniform in physics-based PV models. In reality, the cell temperature is a 

Fig. 2.3 Schematic overview of optical-thermal-electrical single-cell PV model introduced in [19]
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result of complicated intra-module heat flows caused by conduction and convection 
of heat, as well as radiation effects. These heat flows are further affected by the 
interaction between the PV module and its environment [12]. Studies have shown 
that heat distribution varies significantly due to wind flows near the PV module’s 
surface [12, 16]. For example, the temperature difference between the top and back 
surface of PV modules can exceed 20 ◦C., depending on the wind flows relative to 
the module’s position [18]. 

The physics-based model introduced in [19] accounts for the complex heat flows 
by incorporating thermal RC-equivalent sub-circuits, heat transfer coefficients, and 
circuit coupling. The Stefan-Boltzmann law is used for the radiative heat losses from 
the module’s surface to the environment. Spatially resolved heat transfer coefficients 
are experimentally extracted through extensive simulations, to model the intra-
module and inter-module convection of heat, primarily forced by wind flows. Heat 
conduction due to semi-illumination of the PV module is addressed by coupling the 
RC-equivalent sub-circuit of each cell with the sub-circuits of its neighboring cells. 
We refer to [12, 13, 18–20] for more information regarding the physics-based PV 
model of Fig. 2.3, as well as the experimental simulations. 

In contrast to simplified physics-based models or parametric statistical 
approaches, the fine-grained physics-based model of Fig. 2.3 retains its accuracy 
levels regardless of the environmental conditions, with an average error ranging 
from 3.6% to 5.5% [20]. When forecasting PV Eyield with a temporal resolution 
of 1 second, the average percentage error remains below 20% during the whole 
forecasting horizon [3]. The average error drops below 10% and 5% for temporal 
resolutions of 10 seconds and 1 minute, respectively [4]. Furthermore, the temporal 
lag between the forecasted PV energy yield curve and the actual output is 5 seconds 
for a 5-minute forecasting horizon and remains below 3 minutes for forecasting 
horizons up to 15 minutes [4]. It is thus obvious that a detailed PV model, such as 
the one shown in Fig. 2.3, can effectively forecast PV Eyield in the short term, even 
under dynamic weather conditions and ultrahigh spatiotemporal resolutions. 

2.1.3 PV Model Calibration 

Regardless of the modeling approach, optimal configuration of a PV model plays 
a pivotal role in minute-scale short-term forecasting. Calibrating the coefficients of 
a physics-based model, the weights of an artificial neural network, or the hyper-
parameters of a statistical model, can be a challenging task that significantly affects 
the generated outcome. Especially in cases of non-steady state conditions where 
minute-scale temporal resolutions are required, the shape of the objective function 
to be minimized during parameter fine-tuning is usually non-convex, anisotropic, 
and full of local minima. 

The optimization algorithm employed for fine-tuning minute-scale PV models 
should meet three basic search criteria: (i) the algorithm should not be sensitive
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to the initial search point, (ii) the algorithm should be able to perform some kind 
of systematic hill climbing to avoid getting stuck in local minima, and (iii) given 
enough iterations, the algorithm should guarantee convergence. Exhaustive search 
algorithms meet these criteria; however, they are not preferred due to scalability 
concerns. On the other hand, gradient descent optimization algorithms are highly 
sensitive to their initialization and prone to getting stuck in local minima when 
dealing with non-convex objective functions. In Sect. 2.2, we propose a novel 
hybrid global optimization algorithm that satisfies the basic search criteria while 
maintaining the scalability of the overall forecasting approach. 

2.1.4 Energy Yield as a Target Variable 

Most studies use PV power as the target variable when forecasting the output of PV 
systems in the short term. Over the course of the forecasting horizon, forecasts are 
expressed in the form of PV power values, averaged over the specified forecasting 
interval. However, using Eyield as the target variable in minute-scale forecasting 
can significantly reduce the average forecasting error. Unlike PV power forecasting 
models, the bias of which often increase with the forecasting horizon, PV Eyield 
models maintain relatively stable bias and error levels [3]. Additionally, real Eyield 
curves are particularly valuable for energy management tasks that require fine-
grained resolutions, such as battery scheduling. Thus, henceforth we will refer to 
PV Eyield instead of PV power when forecasting in the short term. 

Forecasting PV Eyield directly, rather than forecasting the power output and then 
converting it to energy, is also beneficial for minute-scale short-term forecasting. 
The power accumulation process can cause an additive effect on the forecasting 
bias, further decreasing the accuracy toward the end of the forecasting horizon. 
Furthermore, directly forecasting PV Eyield eliminates all extra errors induced by 
interconnected forecasting models. Chained irradiance-to-power-to-Eyield models 
introduce additional forecasting errors which are propagated to the final forecasts. 
For more details on the advantages of direct PV Eyield minute-scale forecasting, we 
refer to [3]. 

2.1.5 Computational Limitations 

Minute-scale short-term PV Eyield forecasting often involves forecasting intervals 
of less than 1 minute and forecasting resolutions as high as 1 second [3]. These tight 
time windows provide little room for computationally intensive models that require 
long inference times [11]. Additionally, the optimization duration should be limited 
to allow local online learning and calibration, if necessary [5]. Thus, computational 
efficiency is crucial for the applicability and operational feasibility of a minute-scale 
short-term PV Eyield forecasting model.
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Another important objective, often neglected in minute-scale short-term PV 
Eyield forecasting, is to minimize the required computational resources [10]. 
Minute-scale short-term PV Eyield forecasts are particularly useful for small-
scale, low-level residential PV systems, to enable fine-grained tasks related to 
community-level EMSs. Thus, the cost of the overall framework should be kept 
within reasonable limits, to maintain affordability for the average consumer. The 
PV Eyield forecasting model, from the algorithm execution to the processing and 
storage of the data, should be developed to run on cost-effective hardware platforms, 
such as the Raspberry Pi [15]. In this direction, it is essential to ensure that the PV 
Eyield forecasting model can perform satisfactorily with cheap cameras even in the 
absence of other sensors [36]. 

2.1.6 Adaptability and Resilience 

The continuous integration of small-scale low-level building and urban PV systems 
poses additional challenges in the development of minute-scale short-term PV 
Eyield forecasting models. To allow smooth integration, PV models should be 
robust toward highly varying and dynamic environments, adapting to different 
types, configurations, and installations of PV modules. Furthermore, the overall 
forecasting approach should be operable regardless of the surrounding context of 
the GSIs, the camera settings, the prevailing weather conditions, etc. Developing 
case-specific short-term PV Eyield forecasting models would be economically and 
environmentally unfeasible. Thus, adaptability and resilience are essential aspects 
to be considered during the design of short-term PV Eyield forecasting models. 

These highly varying and dynamic environments are the main reasons we 
avoid the usage of deep leaning for PV modeling, despite the promising results 
deep learning has showcased in various research fields. Deep learning usually 
relies on pretrained models and elaborate representative data to adapt to varying 
and dynamic environments. However, this generalization approach is too coarse-
grained for the generation of minute-scale short-term PV Eyield forecasts. Deep 
learning models struggle to capture the microscopic interactions of PV modules, 
briefly described in Sect. 2.1.2. Even in absence of a state-of-the-art physics-
based PV model, we would still advocate for shallower data-driven models, due 
to their computational efficiency, increased interpretability, and sufficient nonlinear 
approximation capabilities, given the appropriate optimization framework. 

2.2 Hybrid Global Optimization of the Short-Term PV 
Energy Yield Model 

In this section, we introduce a hybrid optimization algorithm [28] that balances 
exploration and exploitation by combining an adaptive hill-climbing approach with 
classic gradient descent optimization. The proposed hybrid optimization algorithm
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satisfies the search criteria listed in Sect. 2.1.3, with respect to the computational 
limitations and resilience requirements of minute-scale short-term PV Eyield 
forecasting. Implementation details of the proposed hybrid optimization algorithm 
are presented in Sect. 2.4. 

2.2.1 Background 

Since its inception, simulated annealing [26] has been consistently used to solve 
optimization problems in various fields, mainly due to its systematic hill-climbing 
logic and global exploration capabilities. Given a sufficiently large number of 
iterations, SA can guarantee convergence to a solution close to the global optimum. 
However, SA is generally considered computationally inefficient, as too many 
iterations are usually required to ensure a consistent performance. Therefore, SA 
has seen multiple extensions, particularly at the height of its popularity during the 
1980s and the 1990s. 

Such a simulated annealing extension, called Simulated Annealing Module with 
Update Range of moves, Adaptive annealing schedule, and Inner-loop criterion 
(SAMURAI), was introduced in [9] to improve the computational efficiency of 
classic SA. The hill-climbing approach of SAMURAI ensures sufficiently good esti-
mates of the global optimum with the fewest possible evaluation steps. Furthermore, 
all parameters of SAMURAI are fully adaptive and problem independent. Thus, 
SAMURAI stands as an optimal option for the parameter fine-tuning of a minute-
scale short-term PV Eyield forecasting model. 

2.2.2 Hierarchical Partitioning of the Objective Function 

SAMURAI works particularly well for problems with some form of hidden 
hierarchy in the objective function [9]. By the term hidden hierarchy, we mean 
that the objective function can be partitioned into hierarchical levels which are not 
necessarily macroscopically visible. The most critical decisions during the search 
process are made in regions that contain transitions to lower hierarchical levels. 
Therefore, more iterations should be spent in these regions to guarantee that the 
optimal decision will be made. As the temperature decreases, the resolution of 
the search becomes higher, to allow the identification of more detailed hierarchical 
levels. 

A simplified schematic example of the SAMURAI search process in a one-
dimensional cut of a non-convex objective function E is shown in F ig. 2.4. Each 
snapshot corresponds to a different level of hierarchy. The horizontal arrows 
represent the range of the “jumps” performed to explore new states. At higher 
temperatures, SAMURAI coarsely evaluates the search space to spot the most



2 Accurate PV Energy Yield Forecasting 15

Fig. 2.4 Simplified schematic example of the SAMURAI search process in a one-dimensional 
space. Each snapshot corresponds to a different level of hierarchy 

promising areas. The jumps are big, and the resolution of the search is low. As the 
temperature decreases, lower levels of hierarchy are reached, the “jumps” become 
smaller, and less uphill solutions are accepted. At each hierarchy level, the objective 
function is evaluated at a higher resolution, and the search is directed toward the 
most promising areas. During the final temperature values, the search is completely 
localized to allow the identification of the global optimum. 

2.2.3 Global Annealing Schedule with SAMURAI 

The inner-loop evaluations in SAMURAI are modeled as Markov chains. At each 
temperature step t , new states are added to the chain until the following equilibrium 
criterion is satisfied: 
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where E
(t)
k . is the objective function value of state k, E(t)

ref . is the objective function 

reference value at temperature T (t)
., N

(t)
k . is the number of states explored up 

to state k, and δ . is a user-specified meta-parameter which controls the level of 
search granularity at each temperature step. If 2.1 is satisfied, the cumulative 
contribution of all states is relatively small, indicating that an equilibrium has been 
reached at temperature T (t)

. and no new states need to be added to the chain. This 
way, the Markov chain is longer in critical regions of the search space, to allow 
comprehensive exploration and ensure the right search direction will be chosen. 

The new states are selected based on Monte Carlo analysis with random selec-
tion. The move range should be adaptively limited as the temperature decreases, to 
gradually restrict the initial global search and allow convergence. The type of moves 
and the move range limitation strategy depend on the problem formulation and the 
data type. The acceptance of new states is based on the Metropolis criterion, with 
which uphill solutions are accepted with an exponentially decreasing probability. 

The annealing schedule of SAMURAI is determined by the following equation: 

.α(t) =
{

αmax − (
αmax − α(t−1)

)
M(t−1)

M(t) M(t) > M(t−1)

α(t−1) − (
α(t−1) − αmin

)
M(t−1)−M(t)

M(t−1)−2
M(t) � M(t−1)

(2.2) 

where α(t)
. is the temperature ratio between current temperature step t and previous 

temperature step t − 1., αmin . and αmax . are user-specified ratio bounds, and M(t)
. 

is the total number of explored states (inner-loop iterations) at temperature step t . 
At each temperature step, variable a changes proportionally to the length difference 
between the current and the previous Markov chain. The temperature decrease is 
steeper at less critical regions of the search space to speed up convergence. On the 
contrary, temperature decreases at a slower pace in critical regions to guarantee that 
all necessary search paths will be explored. 

The initial temperature value is experimentally determined by iteratively updat-
ing a random starting value until the average acceptance ratio becomes acceptable 
[1]. The goal is to initialize the temperature such that all new states are accepted 
during the first few temperature steps. While this initialization method may not be 
the optimal choice in terms of computational efficiency, it allows the coarse-grained 
exploration of the whole search space, which is an essential prerequisite of global 
searching. 

2.2.4 Algorithm Interface and Local Search 

When the lowest level of hierarchy is reached (last snapshot of Fig. 2.4), the 
objective function tends to become monotonic. At this point, SAMURAI struggles 
to reach the global minimum, and spends too many iterations to converge. Since the 
neighborhood of the global minimum has already been found, a faster local search
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algorithm with a better convergence rate is more appropriate. Such an algorithm is 
the gradient descent-based Adaptive moment estimation (Adam) optimizer. 

In the proposed hybrid optimization approach, Adam is connected in series 
with SAMURAI, to boost local convergence without compromising the global 
nature of the final solution. An effective global-to-local decision criterion should 
be selected to reliably determine the interface between SAMURAI and Adam. 
When the temperature reaches a final value T0 ., the annealing stops, and the 
optimized set of parameters serve as the initial point for re-optimization with Adam. 
The final temperature value should be determined adaptively, with respect to the 
corresponding average acceptance probability of uphill solutions. If the average 
acceptance probability of uphill solutions at temperature T (t)

. is close to zero, there 
is no longer a need for SAMURAI, and thus T (t)

. is considered the final temperature: 

.T (t) = T0 if
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where N
(t)
k,uphill . is the number of uphill solutions explored at temperature step t and 

β . is the user-specified meta-parameter which controls the threshold of the uphill 
solution average acceptance probability, below which the algorithm can switch 
to Adam. 

2.3 Ground-Based Sky Images Processing 

Appropriate processing of GSIs is essential to obtain an accurate picture of the 
current sky conditions and gain insight on the movement of the clouds. Figure 2.5 
illustrates a basic processing example procedure for GSI-based short-term PV 
Eyield forecasting. GSIs can be converted to numerical data through feature 
extraction or convolutional neural networks. Common features extracted from GSIs 

Fig. 2.5 GSI processing block diagram for short-term PV Eyield forecasting
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Fig. 2.6 Cloud segmentation results generated with the MCT technique 

include spectral features, e.g., the mean Red (R) color, the mean Blue (B) color, the 
standard deviation of B, the difference between R and B, as well as textural features, 
e.g., energy, entropy, contrast, and homogeneity [22]. Local features are also often 
extracted, with methods such as the Scale-Invariant Feature Transform. [33]. 

Cloud formations are recognized in GSIs with cloud segmentation (CS) tech-
niques. There are several CS techniques available in the literature, each with its 
own advantages and limitations [21]. The most simple and efficient CS technique 
is based on the pixelwise difference of R and B [22]. The R-B difference threshold 
is a good indicator of a cloudy pixel. An improvement of classic threshold-based 
CS is the Multi-Color Threshold (MCT) technique [24], which introduces two 
additional thresholds, to reduce the tendency of the R-B difference threshold in 
underestimating the total cloud cover. An example of the CS results generated with 
the MCT technique is presented in Fig. 2.6. The biggest limitation of the MCT 
technique is its sensitivity to threshold selection. The optimal threshold values can 
dramatically change with different camera setups and calibrations. Furthermore, as 
seen in Fig. 2.6, the MCT technique struggles around the circumsolar area. 

CS techniques are useful in identifying the presence of clouds and eventually 
estimating the total cloud cover of the sky. On the other hand, cloud movement 
is estimated with Cloud Motion Modeling (CMM). The objective of CMM is to 
extract Cloud Motion Vectors (CMVs) by comparing multiple consecutive images. 
The positions of the clouds are then estimated for each step of the forecasting 
horizon, to get insight into future sky conditions. CMM is particularly important 
during periods with frequent switching between cloudy and sunny conditions. In 
such cases, it is extremely challenging to forecast the energy yield of PV modules 
without the addition of CMVs to the input [31]. Effective CMM requires the image 
acquisition frequency to be as close to as possible to 1 Hz. Popular CMM methods 
include optical flow and block matching [31]. An increasingly popular alternative to 
CMM is the usage of convolutional neural networks. 

The selection of the appropriate input features significantly affects the perfor-
mance of a PV model. Feature selection for physics-based PV models depends
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Fig. 2.7 GSI classification based on International Cloud Classification System [22] 

on the model’s specifications. On the other hand, the input for data-driven models 
should be carefully chosen to facilitate the approximation of PV power generation. 
Besides PV-related measurements, relevant input information includes the solar 
zenith and azimuth angles, the total cloud cover, and the average R-B difference. In 
the presence of clouds, and regardless of the modeling approach, CMVs should be 
appropriately processed to generate cloud movement forecasts. The rest of the input 
features can be kept constant throughout the forecasting horizon, as their effect on 
the thermal state of PV modules does not drastically change in short timescales [17]. 

The operation of PV modules significantly differs under different sky conditions; 
thus, it is essential to fine-tune the PV model independently for different sky 
conditions to ensure a consistent modeling performance. Classification of GSIs is 
usually based on cloud types, as defined by the International Cloud Classification 
System [22]. This approach defines seven distinct classes, shown in Fig. 2.7.  The  
first class corresponds to clear sky conditions. The remaining classes correspond 
either to a specific cloud type or to a combination of similar cloud types.

Classification of GSIs becomes a challenge in the absence of ground-truth 
labels. Most GSI datasets do not contain labels, and there is no obvious method 
to automatically generate semantic labels based on cloud types. Therefore, manual 
labeling of the GSIs is a prerequisite to train supervised classifiers. However, 
identifying different types of clouds is a difficult task that requires human expertise. 
More importantly, manually labeling several hundreds or thousands of images 
is often not feasible. It is thus necessary to consider alternative classification 
options, such as clustering. Unlike supervised classification methods, clustering 
automatically identifies subgroups within datasets, without the need for ground-
truth labels. Besides not needing ground-truth labels, unsupervised classification 
of GSIs has another major advantage: the selection of the classification criteria 
and the optimal number of clusters can be directed toward optimizing PV Eyield 
forecasts, by combining clustering with feature engineering techniques and co-
optimizing them with the PV Eyield forecasting model. Supervised classification 
methods, on the other hand, usually classify GSIs based in predetermined criteria 
that were designed for other tasks, not necessarily related to PV Eyield forecasting. 
An example of the most representative GSIs of each of the seven clusters generated 
by applying k-means clustering on an encoded feature dataset is depicted in Fig. 2.8. 
Note that the number of clusters is purposely chosen equal to the number of classes 
of Fig. 2.7 to facilitate comparison.
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Fig. 2.8 GSI classification generated by k-means clustering, for seven clusters. Each GSI 
corresponds to the most representative image of a cluster 

2.4 Short-Term PV Energy Yield Forecasting Model 
Implementation 

2.4.1 Case Study 

The case study consists of a 180W rooftop PV module located at the University 
of Oldenburg. The forecasting horizon is set to 15 minutes, while the forecasting 
resolution is kept as high as 1 second to eliminate the temporal averaging effects. 
The input data used, described in detail in [32], are a combination of meteorological 
data, PV-related measurements, and GSIs. Measurements are recorded every second 
and include the diffuse horizontal irradiance, the direct normal irradiance, the 
temperature, and the power output of the PV module. The GSIs are retrieved every 
10s by a low-cost fish-eye-lens camera. Features such as the average of R, G, 
and B channels, the difference between R and B, standard deviation of B, and 
image contrast are extracted from the GSIs. CMVs are extracted by the optical 
flow algorithm. The information about the future sky condition is then provided 
in the form of RGB forecasts. Further information about the input data retrieval and 
preprocessing can be found in [32]. 

The final input instances are a combination of the RGB forecasts and the image 
features. The classification of the input is based on the classification suggested 
in [22] (Fig. 2.7). The labels of the GSIs have already been manually preselected 
in [32]. Even though the dataset was recorded during summer (from July 19th to 
August 31st of 2015), only 10% of the instances correspond to clear sky conditions. 
The input features and the output were normalized using min-max normalization. 
Out of the total dataset, 70% was used for training, while the rest was equally split 
into validation and test sets. Further information regarding the feature selection, 
classification, and preparation of the input can be found in [3]. 

2.4.2 PV Energy Yield Model 

Due to confidentiality reasons, a nonlinear auto-regressive network with exogenous 
inputs (NARX) was used as the PV Eyield model for the case study demonstrations, 
rather than the physics-based model of [19]. The NARX network was chosen mainly
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Fig. 2.9 (a) Sensitivity analysis of meta-parameters β . and δ . for the optimization of the NARX 
network corresponding to CC 2. (b) SAMURAI annealing schedule during training of the NARX 
network corresponding to CC 3 

due to its auto-regressive output, which fits the cumulative nature of Eyield. Further 
details about the structure and advantages of the NARX network can be found in [3]. 

A NARX network is separately trained for each cloud class. The parameters 
to be optimized are the weight synapses of the NARX networks. Therefore, the 
search process is formed as a continuous optimization problem. Minimization of 
the mean squared error (MSE) is chosen as the objective function. The search space 
navigation and move range limitation of SAMURAI are determined based on the 
method suggested in [34], which is a continuous Monte Carlo method that achieves 
maximum information gain while maintaining movement anisotropy by adaptively 
narrowing the search as the temperature decreases. 

The optimal values of the meta-parameters β . and δ . vary depending on the CC 
and the model type. Therefore, it is essential to fine-tune β . and δ . independently 
for each case, to fully activate the potential of the proposed hybrid optimization 
algorithm. Figure 2.9a presents the sensitivity analysis results for the optimization 
of the NARX network corresponding to CC 2 (Cirrus/Cirrostratus). The root-mean-
squared error (RMSE) averaged over the forecasting horizon is used for evaluation. 
Furthermore, Fig. 2.9a includes the average training times corresponding to some 
β . values, as well as the results of non-hybrid SAMURAI and Adam. Adam has 
the lowest training time and accuracy due to premature convergence. On the other 
hand, the training time explodes when Adam is decoupled from SAMURAI, with a 
simultaneous decrease in the forecasting accuracy. This is mainly caused by the poor 
local convergence capability of SAMURAI. For most CCs, the optimal performance 
is recorded for β = 0.001., which gives enough time to SAMURAI to traverse 
through all hierarchical levels before switching to Adam. The only exceptions are 
CCs 6 and 7 (overcast conditions), where β . is significantly larger. In these cases, 
the objective function is simpler, and less temperature steps are needed to find 
the neighborhood of the global optimum. The optimal value of δ . depends on the 
difficulty of each case.
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Figure 2.9b illustrates the annealing schedule of SAMURAI during training 
of the NARX network corresponding to CC 3 (Altocumulus/Cirrocumulus). The 
horizontal axis corresponds to the temperature, the vertical axis to the left corre-
sponds to the objective function, and the vertical axis to the right corresponds to the 
number of inner-loop evaluations. As seen in Fig. 2.9b, the inner-loop evaluations 
are momentarily increased in critical regions with steeper decreases of the objective 
function. SAMURAI spends relatively more time at the final temperature steps, 
indicating that the search is more localized and fine-grained. 

2.4.3 Results 

The proposed minute-scale short-term PV Eyield forecasting model, presented in 
Sect. 2.4.2, is compared with four benchmark models: (a) the persistence model, (b) 
a random forest (RF) model optimized by Ant-Lion Optimization (ALO), proposed 
in [23] for short-term forecasting of PV generation, (c) a simple Long Short-
Term Memory (LSTM) network, and (d) the NARX-based model presented in 
Sect. 2.4.2, but instead of the hybrid optimization schedule, the model is trained with 
classic gradient descent optimization. The normalized RMSE is used for evaluation, 
averaged for all steps of the forecasting horizon: 

.nRMSE = 1

Eyieldmax

√√√√√
1

sN

N∑

i=1

s∑

j=1

(
yij − ŷij

)2 (2.4) 

where Eyieldmax . is the maximum Eyield the PV module can generate during 
the forecasting horizon, N is the number of input instances, s is the number of 
forecasting steps, and yij ., ŷij . are the real and predicted Eyield values, respectively. 
All models were developed in Python, and experiments were conducted on an 
Intel(R) Core (TM) i7-8700 CPU (3.20GHz, 6 cores) desktop computer with 8 GB 
of RAM. 

Table 2.1 presents the average prediction errors of the compared models per CC 
as well as their aggregated forecasting performance and computational efficiency. 
The proposed model has the best overall forecasting performance, exhibiting the 
lowest average errors for four out seven CCs and the most consistent performance 
across all sky conditions. Compared to the persistence model, the proposed model 
improves the forecasting accuracy by more than 10% for all cloudy conditions, 
except for CC 6, which corresponds to completely overcast conditions and includes 
only 3% of the total input instances. Compared to gradient descent optimization, 
the proposed hybrid optimization algorithm reduces the forecasting error by an 
average of 11.05%. However, the improved forecasting accuracy of the proposed 
model comes at the expense of the total training time. Compared to gradient descent 
optimization, the proposed hybrid optimization algorithm takes approximately three
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times longer to train, to avoid premature convergence and achieve an optimal final 
set of parameters. Regarding the inference time, the proposed model needs less than 
40ms to generate a set of 900 PV Eyield forecasts, corresponding to the 15-minute 
forecasting horizon with a 1-second resolution. This leaves enough time for GSI 
acquisition and processing, even at second-scale forecasting intervals, especially if 
considering that parts of the proposed hybrid optimization algorithm can easily be 
translated to less computationally requiring programming languages, such as C. 

2.5 Mid-Term PV Power Forecasting 

Mid-term PV power forecasting covers intraday predictions, the forecasting horizon 
of which ranges between 1 hour and several hours ahead. Intraday forecasts are of 
particular importance for modern power systems, as they bridge day-ahead planning 
operations with real-time microgrid control. An intermediate energy management 
level can be introduced with mid-term forecasting, which contributes to mitigating 
the negative effects of low-quality day-ahead forecasts while offering proactive 
control that reduces the challenges and risks of real-time decision-making. Mid-
term PV power forecasting is commonly used for energy management tasks such 
as demand response and battery scheduling. Furthermore, mid-term PV power 
forecasting is essential for modern electricity markets and intraday energy trading. 

Minute-scale forecasts are still advantageous in mid-term forecasting horizons; 
however, the forecasting resolution rarely needs to exceed 1 minute. Thus, the 
temporal smoothing effect becomes more pronounced in mid-term forecasting due 
to the coarser granularity of the generated forecasts. In this respect, mid-term 
forecasting is less challenging compared to short-term forecasting, and optimal 
forecasting performance can be achieved by data-driven models. 

Similarly to forecasting PV generation in the short term, remote sensing image 
data constitutes the optimal input option for mid-term PV power forecasting. 
Satellite images are preferred over GSIs, as their temporal resolution aligns more 
effectively with forecasting horizons that exceed 1 hour [7]. Up to 6 hours ahead, 
satellite images provide good insight into future sky conditions for areas spanning 
several dozen kilometers. In the absence of satellite images, on-site PV-related 
measurements and Numerical Weather Predictions (NWPs) are the most com-
mon input alternatives. While on-site PV-related measurements provide sufficient 
information for predictions stretching up to 2 hours ahead, they fail to provide 
reliable insight further into the future. Therefore, NWPs should be preferred for 
longer forecasting horizons [5]. Nevertheless, combining satellite images with on-
site PV-related measurements and NWPs into hybrid input sets can be the most 
advantageous approach for data-driven mid-term PV power forecasting models. In 
this section, however, we focus on mid-term minute-scale PV power forecasting 
models that are solely based on on-site PV-related measurements.
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2.5.1 PV Power Time-Series Decomposition 

The performance of data-driven mid-term PV power forecasting models highly 
depends on the quality of the input data used. When satellite images and NWPs 
are not available, on-site PV-related measurements remain as the only viable input 
option. However, as on-site PV-related measurements do not provide any insight 
on future weather conditions, it is difficult for data-driven mid-term PV power 
forecasting models to accurately predict the future trend and fluctuations of the PV 
power time series. In this regard, time-series analysis and preprocessing techniques 
are of particular importance. Signal decomposition is often used to decompose 
the input time series into sub-components that carry information about different 
properties of the original signal. This way, it is easier for the data-driven model to 
identify these properties and predict the future behavior of the target time series. PV 
power generation exhibits strong temporal interdependencies at various frequency 
bands, such as seasonal trends, diurnal cycles, and fast-dynamic fluctuations in 
the presence of cloud formations. Therefore, wavelet transformation methods are 
commonly used for decomposing the PV power time series into sub-series that 
contain information related to different frequency bands. 

2.5.2 Weather Classification 

Input classification for mid-term PV power forecasting is equally important as 
when forecasting PV generation in the short term. However, owing to the longer 
forecasting horizon and the lower temporal resolution of mid-term PV power fore-
casting, a coarse-grained classification based on the prevailing weather conditions is 
adequate. In such a coarse-grained classification approach, days are usually divided 
into sunny, cloudy, and overcast days. As mid-term PV power forecasting models 
are separately calibrated for each weather class, the optimal choice for the total 
number of weather classes becomes a trade-off between forecasting accuracy and 
computational efficiency. 

2.5.3 Model Structure and Optimization 

Hybrid models have exhibited the most promising results for mid-term PV power 
forecasting, as the limitations of each sub-component of the hybrid model can be 
mitigated to some extent by the advantages of the rest of the hybrid model’s sub-
components. Hybrid forecasting models are further enhanced when combined with 
techniques such as signal preprocessing, feature engineering, and metaheuristics-
based fine-tuning. Especially when combined with signal decomposition, hybrid 
models achieve optimal performance when they are nonhomogeneous, i.e., when
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a different sub-model is employed for each of the sub-series of the decomposed 
original signal. Each of the generated sub-series often exhibits different character-
istics; thus, a sub-model should be chosen carefully to optimally fit the specific 
characteristics of the corresponding sub-series. 

The main drawback of nonhomogeneous hybrid models is their excessive 
computational complexity [7]. While this may not be an issue for big PV power 
plant owners, it can be an important limitation for owners of local small-scale 
rooftop PV systems. Furthermore, the optimization of nonhomogeneous hybrid 
PV power forecasting models is also a challenge due to the excessive number 
of parameters to be optimized. Component-wise or layer-wise fine-tuning, i.e., 
individual optimization of each sub-component, leads to suboptimal configura-
tions. On the other hand, optimizing each sub-component of a hybrid model 
with respect to the optimization of the rest of the sub-components can lead to 
significant improvements in the forecasting accuracy. We refer to this process 
as “co-optimization.” The excessive number of parameters to be co-optimized in 
nonhomogeneous hybrid models; however, makes exhaustive search and grid search 
methods unfeasible options for co-optimization. Therefore, we advocate the use of 
sophisticated metaheuristic algorithms for the co-optimization of mid-term hybrid 
PV power forecasting models, to limit the additional computational cost of the 
overall forecasting approach while maintaining scalability. 

2.5.4 Hours-Ahead Probabilistic Extension 

Extending the forecasting horizon up to several hours ahead inevitably increases 
the forecasting uncertainty, especially in the absence of satellite images and NWPs. 
Therefore, probabilistic forecasting models are frequently preferred for mid-term 
PV power forecasting, as they offer a wider perspective of the predictive outcome by 
quantifying the forecasting uncertainty [8]. The optimal type of probabilistic output 
depends on the target application, the optimization approach, and the forecasting 
horizon. For example, for day-ahead scheduling of energy systems with stochastic 
optimization, PV power forecasts could be issued in the form of scenarios [29]. 
However, when forecasting PV generation up to several hours ahead, we advocate 
the usage of prediction intervals (PIs), which offer valuable insight on the upper and 
lower bounds of the target variable while maintaining high levels of interpretability 
and computational efficiency. 

2.5.5 Mid-Term PV Power Forecasting Implementation 

In this section, we present the implementation details and results generated by 
two data-driven mid-term PV power forecasting models which are solely based 
on on-site PV-related measurements. The first model, introduced in [30], is a
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data-driven hybrid non-homogeneous structure based on signal decomposition and 
co-optimization, developed to generate 1 hour ahead forecasts. The second model, 
introduced in [8], is a data-driven hybrid probabilistic PV power forecasting model, 
suitable for extending the forecasting horizon up to several hours ahead. Henceforth, 
we will refer to the first model as the deterministic mid-term PV power forecasting 
model, and to the second model as the probabilistic mid-term PV power forecasting 
model. 

A schematic overview of the deterministic mid-term PV power forecasting model 
is presented in Fig. 2.10a  [30]. The PV power generation time series is decomposed 
into an approximation sub-series and three residual sub-series, using wavelet packet 
decomposition (WPD) and single-branch reconstruction. Distinct data-driven sub-
models are employed for the approximation and residual sub-components, to 
allow for more effective analysis and modeling. The seasonal long-term temporal 
autocorrelations and strong intraday patterns of PV power generation constitute 
LSTM an optimal data-driven architecture for handling the approximation sub-
component. A straightforward choice would be to use LSTM networks for the 
residuals as well. However, besides not being the most computationally efficient 
option, this strategy can also lead to sub-optimal forecasting performance. The 
residuals of the PV power time series exhibit increased stochasticity with negligible 
long-term temporal autocorrelations. Therefore, RFs are employed for handling the 
residual components of the PV power time series, to reduce the required inference 
time and computational requirements. The outputs of each sub-model are linearly 
combined to provide the final PV power forecast. The Ant-Lion Optimization 
(ALO) algorithm is employed for the co-optimization of the parameters of the 
deterministic mid-term PV power forecasting model. Further information about the 
deterministic mid-term PV power forecasting model can be found in [30]. 

The deterministic mid-term PV power forecasting model is evaluated on real 
measurements extracted from a 1.2 MW PV power plant, located in Greece. 
Measurements were conducted at a 1-minute resolution from the 20th of July 
2022 until the 16th of July 2023. The temporal resolution of the forecasts is 
kept as high as possible, i.e., at 1 minute, to reduce the temporal smoothing 
effect and evaluate the proposed mid-term PV power forecasting model at the 
maximum level of difficulty. Furthermore, an ablation study is conducted to evaluate 
the importance of each component of the proposed hybrid mid-term PV power 
forecasting model. Initially, WPD is removed, and the original PV power generation 
time series is directly fed to two non-hybrid models: a simple RF and an LSTM. 
Then, WPD is applied to decompose the original PV power time series into 
four sub-series, as shown in Fig. 2.10a. Two homogeneous hybrid approaches are 
tested, employing solely RFs (WPD-RF) or LSTM networks (WPD-LSTM) for all 
sub-components. Each sub-model undergoes component-wise optimization using 
grid search. Finally, the deterministic mid-term PV power forecasting model is 
evaluated with component-wise optimization (WPD-LSTM-RF) and ALO-based 
co-optimization (WPD-LSTM-RF-ALO). Further implementation details can be 
found in [30].
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Table 2.2 Forecasting performance and computational efficiency of the compared deterministic 
mid-term PV power forecasting models, under different weather conditions 

Sunny Cloudy Overcast 

Model nRMSE (%) Training time (s) Inference time ( μ.s) 

LSTM 9.97 13.44 16.74 40.37 75.42 

RF 8.64 13.32 19.37 62.11 7.53 

WPD-LSTM 9.41 13.16 15.76 67.59 259.95 

WPD-RF 8.12 13.05 15.88 126.54 15.68 

WPD-LSTM-RF 8.67 13.08 15.95 116.78 66.13 

WPD-LSTM-RF-ALO 8.07 12.83 14.86 102.87 69.47 

Table 2.2 presents the final forecasting performance under different weather 
conditions as well as the average computational efficiency of all compared models. 
The non-hybrid LSTM and RF models generally underperform under the more 
challenging cloudy and overcast conditions. The addition of WPD and the use of 
hybrid approaches (WPD-LSTM, WPD-RF, WPD-LSTM-RF) significantly reduce 
the forecasting error, with nRMSE improvements ranging from 2% to 18%. Fully 
co-optimizing the non-homogeneous WPD-LSTM-RF model with ALO reduces the 
nRMSE by 6.92%, 1.91%, and 6.83% under sunny, cloudy, and overcast conditions, 
respectively. Compared to the second-best model of each weather condition, the 
proposed WPD- LSTM-RF-ALO model reduces the nRMSE by 0.62%, 1.69%, and 
5.71% under sunny, cloudy, and overcast conditions, respectively. Thus, the more 
challenging the weather conditions, the bigger the necessity of the proposed co-
optimized nonhomogeneous hybrid approach. 

The average training time obviously increases with the complexity of the 
forecasting model. On the other hand, the memory requirements and inference time 
of RFs are significantly lower compared to those of LSTM networks. Therefore, 
replacing LSTMs with RFs in handling the residuals not only improves the 
forecasting performance but also significantly reduces the average inference time. 
The computational efficiency of the proposed model is further improved due to co-
optimization with the ALO algorithm. ALO is completely scalable, in contrast to 
grid search which quickly explodes when fine-tuning more than six parameters. 
For a total set of 15 parameters, grid search co-optimization becomes completely 
unfeasible, as it would require approximately 5 years to explore all combinations 
generated for just 3 values per parameter. 

Figure 2.10b presents an example of the PV power curve predicted by the 
proposed mid-term PV power forecasting model during a cloudy day. The forecasted 
PV power curve generally follows the actual trend and manages to capture ramp 
events to some extent, despite the unfavorable weather conditions and the fact 
that only numerical on-site measurements are provided as input. The time shift 
between the predicted and the actual PV power curves ranges from 10 to 38 minutes, 
which is sufficiently smaller than the forecasting horizon. PV power generation is 
slightly underestimated during peak hours, which can easily be mitigated by adding 
temporal and peak-hour features to the input set.



Fig. 2.11 Hourly PIs and intra-hour point predictions generated by the probabilistic mid-term PV 
power forecasting model under cloudy conditions. (a)  PVPP  1.  (b)  PVPP 2



2 Accurate PV Energy Yield Forecasting 31

The probabilistic mid-term PV power forecasting model is based on LSTM 
networks, which handle the original PV power time series to generate initial minute-
scale point predictions. PIs are then constructed with the bootstrap technique in 
an hourly resolution. Bootstrap sampling is applied on daily subsets of historical 
data, to maintain the diurnal temporal autocorrelation of the PV power time series. 
The generated PIs are then further optimized by an improved Chicken Swarm 
Optimization algorithm, which is coupled with a prey-predator (PP) mechanism. 
The aim is to increase the sharpness of the PIs while maintaining their coverage 
above the specified confidence level. Further information about the probabilistic 
mid-term PV power forecasting model can be found in [8]. 

The probabilistic mid-term PV power forecasting model is evaluated on two 
distinct case studies. The first case study refers to a 1.5MW PV Power Plant (PVPP 
1), in which measurements are extracted at a 1-minute resolution. The second case 
study refers to a 11.9MW PV Power Plant (PVPP 2), in which measurements are 
extracted at a 15-minute resolution. For both case studies, the proposed probabilistic 
mid-term PV power forecasting model achieves superior forecasting performance 
in comparison with all benchmark models, regardless of the prevailing weather 
conditions. PIs were generated for 90%, 95%, and 99% confidence levels. In 
all cases, the proposed model maximizes the sharpness of the generated PIs, 
while maintaining their average coverage above the specified confidence level. 
Furthermore, the proposed model generates reliable point predictions that provide 
valuable insight regarding the intra-hour PV power fluctuations. Figure 2.11 illus-
trates an example of the hourly PIs and the intra-hour point predictions generated 
by the probabilistic mid-term PV power forecasting model for both case studies 
under cloudy conditions. Further implementation details and results regarding the 
probabilistic mid-term PV power forecasting model can be found in [8]. 

2.6 Conclusions 

In this chapter, we summarized the basic principles and challenges of forecasting 
PV generation in minute-scale resolutions. Especially for short-term forecasting 
horizons, we believe that PV Eyield forecasting models will become extremely 
relevant in the coming years, due to the continuous integration of small-scale 
building PV systems and the consequent increasing need for smart energy man-
agement frameworks. As the forecasting challenge increases with the temporal 
resolution of the forecasts, we advocate the use of sophisticated physics-based PV 
models, as long as the forecasting horizon allows for their computational intensity. 
Regarding the input data, remote sensing information provided by simple camera 
setups and satellites offer significant insight on future sky conditions. Regardless of 
the modeling approach, optimization plays a crucial role in the overall forecasting 
accuracy, computational efficiency, and scalability, as demonstrated both for short-
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term and mid-term forecasting horizons. Further demonstrations can be found in 
related work we have published over the last decade, provided in the references. 

We believe that the main challenge regarding minute-scale PV Eyield forecasting 
will be to limit the required computational resources and develop models that are 
fully adaptive and resilient. PV Eyield models should be accessible and affordable 
for everyday end-users, to facilitate the smoother integration of PV systems into 
smart microgrids and energy communities, reduce the average energy costs and 
CO 2 . emissions, and promote a more sustainable lifestyle. Furthermore, in the era 
of artificial intelligence, green computing solutions have become more crucial 
than ever. Thus, our aim with this chapter was not only to provide the basis for 
accurate and efficient minute-scale PV Eyield forecasting but also to demonstrate 
the importance of the collaborative interaction between different disciplines to 
achieve optimal forecasting results. 
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Chapter 3 
Accurate Energy Yield Forecasting 
for Wind Turbine Parks 

Dimitris Michos, Andreas Kazantzidis, Markos A. Kousounadis-Knousen, 
Ioannis K. Bazionis, Pavlos S. Georgilakis, Michael Daenen, 
and Francky Catthoor 

Just as for PV installations (see Chap. 2), the past decades have shown a rapid yearly 
growth in wind turbine plants. So together with PV, it is the main driver for the 
society-level transition to renewable technologies. In 2023, the global cumulative 
wind turbine (WT) capacity increased by 117 GW, reaching a total of about 1 
TW. Continuous advancements in WT technologies have enhanced their cost-benefit 
ratio by reducing manufacturing costs while increasing Eyield efficiency. 

Similar again to the PV installations, WT power generation is characterized by 
high variability and volatility, mainly due to the strongly varying wind fields both 
due to thermal fluctuations and terrain effects. Especially in forecasting horizons 
where the averaging out effect is less applicable, the intermittency and volatility 
of wind power can lead to forecasts of significant uncertainty. With wind power 
penetrating the energy systems more and more every year over the last decade, 
researchers have focused on quantifying this forecasting uncertainty. This variability 
can have severe effects on the effective operation of modern wind parks. Therefore, 
broader integration of such systems again necessitates the introduction of smart 
energy management systems (EMSs) (see Chap. 5), which in turn rely on accurate 
forecasts of Eyield generation. 
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However, optimal EMSs include multiple timescales (see Chap. 5 also); thus, 
forecasts of WT Eyield generation need to be issued for different forecasting 
horizons, similar to the PV case in Fig. 2.1. Among these, minute-scale forecasts 
enable specific real-time EMS operations, such as ramp rate control, demand 
balancing, and battery scheduling [1, 3]. In this chapter, we will address how to 
better deal with this variation both for ultra-short-term (10–30 minutes ahead) and 
short-term (a few hours ahead) forecasting timescales. 

3.1 Physics-Based Ultra-Short-Term Wind Energy 
Forecasting 

Wind energy forecasting is crucial for optimizing energy management by improving 
the use and storage of diverse energy sources and enabling rapid responses to 
extreme conditions [30]. In energy sectors characterized by dynamic demand 
and storage capabilities, predicting energy production over short time horizons is 
essential for the effective implementation of dynamic pricing systems based on 
smart grids, similar to those used for longer time frames [24, 27, 29]. This growing 
demand for ultra-short-term wind energy forecasting is driven by the need to 
minimize power losses, stabilize electricity prices, and achieve cost savings through 
improved energy storage and management. In the context of this book, it is also 
crucial to drive the production input for the load-store balancing and the holistic 
energy management of the micro-grid (see Chap. 5). 

3.1.1 Problem Formulation and Context 

Accurate and reliable wind energy forecasting plays a pivotal role in integrating 
wind power into the grid and ensuring stability. This is especially critical in ultra-
short-term forecasts, which focus on predictions within a 30-minute window, as 
they help to optimize energy management strategies by leveraging the benefits of 
precise forecasts. This is even more needed to deal with real-world wind farm (WF) 
modelling limitations which have emerged. These derive from economic factors 
related to equipment update and the new methods which have been developed 
to support modern WT types. Predicting the Energy Yield (E-yield) of a WT 
is particularly challenging due to the chaotic nature of wind movement over 
short timescales and in complex terrains. Wind forecasting models are generally 
categorized into statistical models and physics-based models. Statistical data-driven 
models, including Artificial Neural Network (ANN), are valued for their fast 
and accurate predictions suitable for operational use [12, 36]. These models can 
directly predict the E-yield or wind speed, as seen in [43]. However, they require 
extensive datasets for training and must be tailored to specific locations, making
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them much less suited to changing conditions. Established wind farms (WFs) with 
minimal infrastructural changes can provide the necessary data, but new WFs need 
to start measurement campaigns well before the installation of the first turbine. 
Furthermore, these models need to be retrained when site or environmental changes 
occur, such as new turbines or neighbouring structures (within km range), which will 
occur quite often in an urban environment. This leads to costly and time-consuming 
upgrades which can also disrupt proper operations. 

In contrast, physics-based models, like computational fluid dynamics (CFD) 
models like the ones presented by [32, 37, 41, 42] and [34], offer detailed estimations 
of wind fields and are less affected by environmental changes compared to statistical 
models. Wind flows are highly sensitive to terrain features and obstacles, partic-
ularly near buildings and urban areas [39, 46]. Even minor terrain modifications, 
such as constructing a small shed near a WT, can significantly impact the wind 
field [25]. The complex interactions between three-dimensional wind flows and 
turbine blades mean that E-yield can be sensitive to terrain changes, especially 
with elevation fluctuations. However, the high computational demands of physics-
based CFD models, which often involve long computation times for time-dependent 
simulations, limit their application for real-time online ultra-short-term forecasting 
where rapid predictions are needed. 

Our research in the past 5 years has led to an innovative physics-based model 
designed for ultra-short-term WT power forecasting. The presented model can be 
separated in two parts, the first which is a wind spatial extrapolation and forecasting 
model that leverages CFD principles with stationary equations to address the unique 
challenges posed by complex terrains (see Sect. 3.1), and the second part which is 
the power forecasting model that takes advantage of a novel, yet simple method 
to detect the power production latency of a given WT, accounting for persistence 
in wind conditions (see Sect. 3.2). By spatially extrapolating limited wind LIDAR 
measurements, the CFD model named WiSpEx, is able to generate high-resolution 
input datasets that enhance the accuracy of ultra-short-term forecasts [2], even 
in complex environments. Recognizing the impact of complex terrain on LIDAR 
measurement accuracy [7, 18, 19], our research has also examined the model’s 
forecasting performance under various conditions through simulations conducted 
over the CRES site in Greece near to Athens. 

The final part of our modeling approach involves WEEL that handles the 
conversion of simulated wind speeds into power through a continuous power curve 
approximation, introducing a novel method for detecting power extraction latency 
in WTs. This approach can empower small, low-cost WFs to optimize their existing 
setups while enabling further research through the use of physics-based synthetic 
datasets. 

By prioritizing the physics of wind behavior, our novel approach reduces depen-
dency on terrain-specific adjustments, allowing the model to retain the accuracy of 
traditional physics-based forecasts at a significantly reduced computational cost. 
It extrapolates the wind field from the measurement locations at the WT over 
the whole WF (or area of interest). This enables fast and reliable predictions, 
promoting broader operational use of CFD in wind forecasting and encouraging the
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development of hybrid models that combine the strengths of statistical and physics-
based approaches. Such hybrid models could potentially overcome the limitations 
of each individual method, delivering more accurate and reliable ultra-short-term 
wind energy forecasts and fostering further innovation in the field. 

In our main experimental study, an attempt to test the limits of CFD simulations 
to recreate a given wind field over a complex terrain from scarce data, in a 
sufficiently fast and accurate way, was made. In many occasions, a WF may not 
be able to withstand the cost of buying and/or maintaining the equipment needed to 
collect large amounts of quality data, like in our case study. The CRES site, situated 
in the complex terrain of Lavrio, Greece, presents a unique challenge for wind 
resource assessment. Wind LIDAR measurements were provided by a specific wind 
LIDAR campaign conducted at CRES between October 22nd and 24th, 2010, with 
temporary use of the equipment. Wind measurements were obtained at nine different 
heights (40m, 54m, 78m, 100m, 120m, 140m, 160m, 180m, and 200m). The 
potential underestimation of wind speeds and turbulence intensity by the LIDAR 
is affected by vertical wind shear and atmospheric stability. These limitations 
underscore the importance of data validation and uncertainty quantification in CFD 
modeling. It is important to note that the LIDAR wind speed measurements at 
the CRES site have errors ranging from 4% to 6%, as stated by Bingöl et al. 
[7]. These errors, likely arising from factors such as terrain slope, vegetation, and 
atmospheric stability, need to be considered when interpreting the simulation results 
and assessing their accuracy. 

The wind LIDAR measurements, while valuable, lack data close to the ground 
level. This gap in data, coupled with the inherent errors in LIDAR measurements, 
underscores the challenges in accurately specifying boundary conditions for CFD 
simulations. The quality of these boundary conditions directly impacts the reliability 
and accuracy of simulation outcomes [25]. 

To address these challenges, our CFD benchmark version is designed to spatially 
extrapolate wind fields in under 3 minutes, even with limited wind and temperature 
data. The benchmark model achieves Mean Absolute Percentage Error (MAPE) 
below 10% for the estimations of wind speed at hub height of the WTs installed in 
CRES, making it a valuable tool for generating high-resolution wind datasets when 
critical information is missing. Figure 3.1 illustrates the placement of the LIDAR, 
WTs, and the surrounding terrain. 

The 3D representation of the CRES site and its vicinity, described by a domain 
volume of approximately 2 km ×. 2.5 km ×. 0.6 km is created within the multi-
physics framework COMSOL. We have created a subdomain enclosed by the initial, 
encompassing the locations of the WTs and the LIDAR, which is positioned at 
the inlet boundary plane of WiSpEx simulations conducted for the inner area. 
The terrain within the domain is complex, with an average elevation of 66m and 
a standard deviation of 33m. The maximum elevation reaches 136m, while the 
minimum is near sea level as stated by [25] 

In our study the WT’s are not inserted in the simulations to decrease the 
computational time of the simulations. We conducted Simulations to evaluate the 
effects of different obstacles and simplifications on wind flow. For instance, a
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Fig. 3.1 CRES—3d geometry view with LIDAR, WT locations and wind measurement statistics 
(left), meshed geometry (right) 

non-rotating WT of similar size to those in our case study can produce a wake 
extending up to 270 m. As shown in [25], we cannot neglect these effects as this 
would lead to large errors on the E-yield forecasting. For instance, a shed-like 
structure placed 200 m away from a WT could influence the flow in all directions, 
potentially extending its effect to the rotor area. These simulations reveal how 
various obstacles can significantly alter wind flow behavior over large areas. 

3.1.2 The Wi.Sp.Ex. Approach 

WiSpEx operates under the [25] hypothesis that steadystate solutions of CFD equa-
tions can effectively represent the flow over complex, uncontrolled environments 
under specific conditions. This assumption is rooted in the principles of calculus 
used in CFD and finite-element theory. The core idea is that the temporal evolution 
of airflow within a volume (CFD discretized) can be approximated by a series of 
steady (stationary) states. As the volume increases or the mean velocity of the 
airflow within the volume rises, a stationary flow should represent the averaged flow 
over a longer or shorter duration, respectively. 

IAS extrapolates a 3D wind field from a 1D field with simplified inlet conditions. 
EAS extrapolates 1D LIDAR measurements to the 2D inlet wind field of the E-
IAS simulation, which aims to capture the effect of terrain characteristics to the 
flow to. naturally extrapolate Lidar measurements over the wind park. The EAS 
aims to physically extrapolate the wind profile both vertically and horizontally over 
the E-IAS inlet plane. To achieve this, a 2D inlet plane wind field was generated, 
assuming uniform velocity along the X-axis of the inlet and zero vertical velocity 
component. A ramp function was used to extrapolate LIDAR wind measurements 
vertically below 40m, while constant extrapolation was used above 200m. 

Once the EAS results were obtained, a 3D matrix containing the simulated wind 
velocity vectors at the inlet of the examined area was created. A deviation matrix 
was then calculated to capture the difference between the EAS simulated LIDAR 
velocity and the actual LIDAR measurements. Finally, a new matrix was generated
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to represent the extrapolated inlet wind field, combining the deviation matrix and 
the extrapolated LIDAR measurements. The vertical velocity component for the E-
IAS inlet field was set to zero, similar to the IAS and EAS. The E-IAS simulation 
was then run over the area of interest, 

The results in [25] for the IAS, EAS, and E-IAS (see that paper for more 
explanations on these 3 different options) compare their performance after being 
corrected with linear regression, in terms of Mean Absolute Error (MAE), Mean 
Square Error (MSE), Root Mean Square Error (RMSE) and MAPE. The results are 
very promising, as shown below. Figures 3.2 and 3.3 present the velocity magnitude 
plots alongside their respective linear regression scatter plots for the Enercon and 
NEG WTs. An examination of the velocity magnitudes figures, indicates that wind 
direction affects the accuracy of the model (Table 3.1). 

The E-IAS simulations, producing the final output of the WiSpEx model, demon-
strate the ability to transform limited LIDAR measurements into a detailed wind 
field dataset. As shown in Table 3.1, the MAE for wind velocity estimation is 0.81 
m/s for the Enercon WT, 0.76 m/s for the NEG WT, and 0.56 m/s for the Vestas WT. 

Fig. 3.2 Enercon IAS and E-IAS time series results. (a) IAS—Velocity magnitude time series. (b) 
E-IAS—Velocity magnitude time series 

Fig. 3.3 Enercon IAS and E-IAS scatter plot results. (a) IAS—Velocity magnitude linear regres-
sion scatter plot. (b) E-IAS—Velocity magnitude linear regression scatter plot



3 Accurate Energy Yield Forecasting for Wind Turbine Parks 41

Table 3.1 E-IAS −.WT 
Corrected Velocity 
Magnitude Statistics 

Enercon NEG 

MAE [m/s] 0.81 0.76 

MSE [m 2 ./s 2 .] 1.08 0.93 

RMSE [m/s] 1.04 0.96 

MAPE [%] 7.62 7.98 

The corresponding MAPE values are 7.62%, 7.98%, and 7.08%, respectively. These 
results indicate a significant improvement over previous simulations, highlighting 
the model’s efficiency in extrapolating sparse measurements into a comprehensive 
high-resolution dataset. Specifically, the model successfully reconstructs a 3D wind 
field at 29,928 locations using only nine vertical measurement points per time step, 
achieving this transformation in less than two minutes. This capability provides a 
3325-fold increase in data resolution, which is particularly valuable for enhancing 
ultra-short-term wind forecasting applications. 

The computational time required for a single IAS simulation averages 43 
seconds, with EAS requiring 61 seconds. However, E-IAS simulations exceed 100 
seconds due to the additional calculations needed for extrapolation and data loading. 
Nonetheless, this is still within our tolerable latency for the 15 minutes ahead 
periodic forecast context. Part of the stated time is the EAS, in case sufficient 
inlet measurements are present the IAS is run directly without the need for inlet 
extrapolation. The E-IAS model’s ability to generate high-resolution wind field 
data makes it highly suitable for use in ultrashort-term forecasting models. By 
creating extrapolation look-up tables, the E-IAS framework can be seamlessly 
integrated into forecasting applications, improving accuracy without significantly 
increasing computational demands. Furthermore, statistical models can be easily 
updated following changes in terrain by reconstructing wind fields without requiring 
new measurement datasets. 

While direct comparisons between different model types are generally discour-
aged, we evaluateWiSpEx’s performance against state-of-the-art forecasting models 
from the literature to gain a comprehensive understanding of its capabilities. This 
approach aims to determine whether WiSpEx can be adapted and expanded for 
ultra-short-term wind power generation forecasting, with the intention of integrating 
it into WEEL. Since the core physics-based principles of WiSpEx will remain 
consistent for this new application, we do not expect significant changes in its 
behavior. 

It is important to note that the positioning of the inlet relative to the WTs 
affects the phase accuracy of simulated wind speeds. Specifically, increasing the 
distance between the inlet and the WTs leads to greater phase errors due to the time 
required for an air parcel to travel this distance. Consequently, placing measurement 
instruments far from a WF suggests that WiSpEx’s extrapolations could serve 
effectively as forecasts.
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InWang and Yang, 2021, the basic statistics of state-of-the-art forecasting models 
are presented, providing a baseline for roughly evaluating our model’s performance, 
as shown below. At the first forecasting step, the MAPE of our model falls within 
the middle of the MAPE range of these models, which is promising given the 
simplifications implemented in our simulations. However, at the second forecasting 
step, the MAPE of all models significantly increases, ranging between 8.09% and 
14.89%. Notably, the model proposed by Wang and Yang, 2021 almost doubles its 
MAPE to 8.09%. By the third forecasting step, their model establishes the lower 
limit for MAPE at 11.73%, further escalating to exceed 40%. 

This behavior across all models highlights the challenges of predicting such 
a highly variable atmospheric condition over shorter time frames. Despite these 
challenges, our model demonstrates the potential to produce accurate estimations. 
The ability to generate 3D high-resolution datasets from 1D measurements with low 
errors is advantageous for any forecasting model, including those compared in the 
study. Creating reliable extrapolated wind datasets is critical for all stages of a WF, 
from selecting optimal locations for WTs to ensuring efficient operation of the WF 
and optimizing smart grid performance. 

3.1.3 The W.E.E.L. Forecast Modelling Approach 

Every WT extracts Energy from wind based on it’s engineered design. The 
momentum of a WT temporarily delays it from being synchronized with its 
optimal rotational frequency for a given change in wind speed. This results in a 
power production latency(or lag) which we call Wind Energy Extraction Latency. 
Turbulence and strong gradients affect this latency. Our model, WEEL, named after 
the it’s purpose, is created to unveil and exploit a WT’s “power lag” to create, 
improve or extend (in time) Ultra-Short-Term Power Production forecasts through 
the conversion of wind speed to power by reducing the errors produced by this 
physical process in a fast and simple way. 

WEEL captures the inherent lag between wind speed and power output with 
simple, fast, data driven statistical methods. Instead of relying on simple averaging 
of wind speed data, which can lead to a loss of valuable information regarding trends 
and short-term fluctuations, we propose utilizing the highest resolution �t . averaged 
measurements (available or interpolated) and Moving Average (MA)s instead of 
simple averaging. This approach helps maintain the original sample length while 
preserving key trend characteristics. More details are provided in [26]. 

The first part of WEEL is the Power Curve model. The Power Curve’s approxi-
mation is the primary source of errors for the E-yield forecasting. The Power curves 
P(u) (u is the scalar velocity magnitude) can be produced by continuous functions 
approximated to real data, by averaging to speed bins (wind speed ranges), or be 
obtained by manufacturers. Most complex models include meteorological variables 
and account turbulence, focusing on how atmospheric conditions affect the power
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output of a WT as presented by [31]. Tailoring a curve to suit realistic needs is 
always important in any type and scope of modeling approach. 

The second part of the model is the identification of the latency. The detection 
of latency is called Wind Optimal Shifted Value (ShiVa) identification. WEEL can 
directly produce ultra-high-time-frame forecasts quickly and directly by applying a 
power curve transformation to WEEL’s maximum ShiVa shifted wind speed series. 
Maximum shiva is the maximum allowed shift in terms of error, while not raising 
the error more than the unshifted. WEEL uses the ShiVas to stabilize the error from 
power conversion and/or extend the forecasting horizon of a forecasting module. In 
our case, it utilizes WiSpEx, assuming that there is a phase error due to air travel 
distance from the inlet of the simulations to the WTs. Such a scenario is possible 
when measurement locations are far away from the WT vicinity, like in the case of 
conically scanning LIDARs. 

The final conversion of wind speed to power is typically accomplished by gener-
ating a power curve from empirical data or using the manufacturer’s specified power 
curve. The accuracy of the fitted power function and the standard deviation of the 
error significantly influence the performance of WEEL. To assess the performance 
of WEEL under realistic conditions, we consider a scenario where the function 
approximating the power curve of a WT captures the primary characteristics of 
power production but may not fully account for behavior at the extremes of the 
WT’s operational range. For this purpose, we employ least squares optimization 
[35] in python to approximate the power curve with Pfit, which is based on the input 
variable x (e.g., wind speed) and several parameters. 

Least squares optimization is a fundamental technique for fitting a model to data 
by minimizing the sum of squared differences between observed values and the 
values predicted by the model. The objective is to find the model parameters that 
make the predicted values as close as possible to the actual observations. 

3.1.4 Experiments and Results 

For our experiment, we focus on 15-minute power production forecasting due to its 
significance in providing WFs a reasonable time frame for operational adjustments 
and offering energy traders an opportunity to strategize. This focus defines the 
averaging window for power production. We employ a 10-minute averaging window 
for the wind speedMAs, matching the already extracted 10-min wind speedWiSpEx 
results. 10-minute MAs are both slightly faster and more volatile, a characteristic 
that can be particularly advantageous during ramp events. 

Our validation process utilizes WTs’ 10-minute MAs of wind speed measure-
ments and 15-minute power measurements of 1-minute resolution to pinpoint the 
maximum ShiVa offset of wind speed series that minimizes the standard deviation 
with respect to their fitted power curve. By employing different averaging window



44 D. Michos et al.

Fig. 3.4 Enercon and NEG 15-min power curves from 0-shifted 10-min wind measurements. (a) 
Enercon—No shift. (b) NEG—No shift 

sizes for wind speed and power calculations, we exploit the inherent trade-off 
between volatility and trend robustness. The 10-minute MA wind speed, while 
exhibiting higher volatility, captures trend changes more rapidly. Conversely, the 
15-minute MA power output smooths out fluctuations but requires a slightly longer 
duration to reflect the underlying trend. 

By identifying the WT “power lag” via visual scatter plot inspection for different 
time shifts (see Figs. 3.4, 3.5, and 3.6) and different error metrics (Tables 3.2, 
and 3.3), the volatility inherent in the wind speed data can be effectively mitigated. 
This is achieved by shifting the wind speed series forward by the determined optimal 
or maximum ShiVa. Once the optimal ShiVa is established, the estimation of 15-
minute power production with a max ShiVa-minute lead time is possible, and the 
final power curve can be selected. This methodology proves particularly valuable for 
capturing power production during rapid changes in wind speed like ramp events, 
without incurring a significant computational burden. 

In [26], we present and analyze the results obtained from WEEL model. Many 
ultra-short-term wind power forecasting models are being published the last few 
years, and almost all of them are statistical models like the ones presented by 
[22, 28, 38, 45]. Most of the models available present their results in terms of 
error reduction and not with direct error evaluations. Most of the times scientists 
use Symmetric Mean Absolute Percentage Error (SMAPE) instead of MAPE to 
reduce extreme error significance and normalized values like Normalized Root 
Mean Square Error (NRMSE) and Normalized Mean Absolute Error (NMAE) to 
generalize model behavior. 

Table 3.4 provides a detailed overview of how well the WEEL method performs 
in the prediction of power output at different time steps for the Enercon WTs. A key 
takeaway is the consistently low SMAPE, which stays below 10% for all prediction 
horizons, indicating sufficient accuracy.
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Fig. 3.6 Enercon and NEG 15-min power curves from 5-minute shifted 10-min wind measure-
ments. (a) Enercon—Maximum ShiVA shift. (b) NEG—-Maximum ShiVA shift 

Table 3.2 WEEL—Enercon shift stats 

Metric +.0-min shift +.1-min shift +.2-min shift +.3-min shift +.4-min shift +.5-min shift 

MAE 12.961 11.577 10.838 10.675 11.129 12.353 

MSE 293.660 231.483 204.463 201.226 220.992 274.580 

RMSE 17.136 15.214 14.299 14.185 14.865 16.570 

MAPE 6.342 5.664 5.317 5.225 5.416 5.988 

Table 3.3 WEEL—NEG shift stats 

Metric +.0-min shift +.1-min shift +.2-min shift +.3-min shift +.4-min shift +.5-min shift 

MAE 18.385 16.930 16.384 16.490 17.179 18.653 

MSE 614.732 511.373 470.061 472.260 518.871 629.909 

RMSE 24.793 22.613 21.680 21.731 22.778 25.097 

MAPE 7.561 6.872 6.601 6.652 6.988 7.74 

3.1.5 Discussion and Future Work 

In our work we have demonstrated the complementary behavior between data-driven 
and physics-based approaches. It highlights the necessity of both approaches in a 
comprehensive wind power forecasting system. Data-driven models are invaluable 
for real-time operations and short-term decision-making, where capturing immedi-
ate fluctuations is critical. Physics-based models are widely used to provide valuable 
insights into longer-term trends and can serve as a reliable backup when historical 
data is scarce or unreliable. This is why the attempt to create a physics-based ultra-
short-term forecasting model that has the ability to extrapolate data like WiSpEx is 
a difficult and valuable task. A significant advantage of physics-based model is their 
capability to directly adapt to any environment and changes that happen by human 
intervention. On the other hand, statistical models need training on new data for new 
locations and in cases where human interventions change the characteristics in the 
vicinity of a WT.
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Recognizing the strengths and limitations of each approach, researchers are 
increasingly exploring hybrid models that combine data-driven (statistical) and 
physics-based components, like NWP forecasts [8, 9, 13, 14, 21, 33, 40, 44]. These 
hybrid models aim to leverage the short-term accuracy of data-driven techniques 
with the longer-term stability of physics-based approaches like NWP. By integrating 
both paradigms, they seek to achieve superior overall forecasting performance 
across various time horizons. Our fast modeling approach is an attempt to bridge the 
scale gap that is between mesoscale and microscale, especially in urban areas and 
their surroundings, as NWP models’ horizontal resolution is usually 1x1 km or more 
(up to several kilometers). Ultimately, neither approach is universally superior. Their 
coexistence and potential integration into hybrid models hold the key to unlocking 
the full potential of wind power forecasting. As research in this field progresses, we 
can anticipate even more sophisticated models capable of accurately predicting wind 
power generation across various timescales, facilitating the seamless integration of 
this renewable resource into our energy systems. 

While this study provides compelling evidence of WEEL’s effectiveness, plenty 
of room for future research and development remain. Further investigations into 
WEEL’s performance across diverse geographical locations and WF configurations 
are suggested. Analyzing its capabilities in varying terrains and wind regimes can 
yield deeper insights into its adaptability and potential limitations. 

Exploring WEEL’s application at the individual turbine level is another promis-
ing direction. Predicting the power output of each turbine separately and then 
aggregating the results could further reduce forecasting errors, especially in large 
WFs with heterogeneous wind conditions. Because our WiSpEx simulations are 
more accurate for higher WT tower heights, this favors our approach given the 
current technology trend. 

Integrating WEEL with advanced remote sensing technologies, such as scanning 
long-range LIDARs, can unlock even greater levels of accuracy. Leveraging the 
high-resolution wind data captured by these technologies allows WEEL to refine its 
understanding of wind flow dynamics and generate more precise power predictions. 
Finally, investigating the potential of combining WEEL with other state of-the-
art forecasting models, such as those based on machine learning or artificial 
intelligence, could lead to the development of hybrid forecasting approaches that 
harness the strengths of both physics-based and data-driven techniques. 

3.2 Mid-Term Probabilistic Wind Power Forecasting 

With wind power penetrating the energy systems more and more every year over 
the last decade, researchers have focused on quantifying the forecasting uncertainty. 
Especially for longer forecasting horizons, the intermittency and volatility of wind 
power can lead to forecasts of significant uncertainty, not captured by deterministic 
forecasting models which only offer single-valued predictions. On the other hand, 
wind power probabilistic forecasting (WPPF) models offer a broader range of
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potential outcomes, presenting results as quantiles, prediction intervals (PIs), or 
distributions. PIs, in particular, offer estimates about the upper and the lower bound 
of the generated outcome without compromising computational efficiency [4]. 

WPPF offers valuable insights into the fluctuations and risks associated with 
wind power generation, which facilitates more informed decision-making [5]. 
Consequently, probabilistic methods may eventually become as effective as deter-
ministic ones, potentially transforming various decision-making processes, such 
as grid management, energy trading, and resource allocation, into probabilistic 
frameworks. For instance, energy traders can leverage probabilistic forecasts to 
refine their trading strategies, while grid operators can use this information to 
enhance energy supply management and ensure grid stability. 

Various WPPF models have been proposed in recent years, focusing more on 
mid-term to long-term forecasting horizons, for which the forecasting uncertainty 
significantly increases. These models usually combine Numerical Weather Predic-
tions (NWPs) and data-driven methods with probabilistic analysis to generate the 
final probabilistic forecasts. We refer to surveys [4] and [5] for a more detailed 
review of the current state of the art and trends of WPPF. In this section, we focus 
on data-driven methods for the forecasting uncertainty quantification, creating mid-
term to long-term probabilistic forecasts in the form of PIs. 

This section demonstrates the implementation of a mid-term WPPF model that 
generates intra-day and potentially even day-ahead PIs. Furthermore, it highlights 
the need to further enhance data-driven models with optimization algorithms, as 
well as to introduce hybrid forecasting and optimization approaches in order to 
achieve optimal probabilistic forecasting performance. 

3.2.1 Case Studies 

Two different case studies were investigated for the proposed WPPF approaches. 
The first dataset is the one featured in the Global Energy Forecasting Competition 
2014 (GEFCom2014) [15]. It includes hourly data from 10 WFs in Australia, 
comprising wind observations at 2 different altitudes, 10 meters and 100 meters 
above ground level. For each of the 10 WFs, the dataset includes the zonal and 
meridional wind components (u10, v10, u100, v100) as well as the wind power 
output values normalized by the nominal capacity of each WF. The second dataset 
involves data from 200 randomly selected WTs within a WF and 3 meteorological 
masts. These WTs are situated in a flat area in the United States. The dataset 
provides hourly wind speed and power output data for each WT, along with hourly 
wind speed and direction measurements for each meteorological mast.
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3.2.2 Wind Power Probabilistic Forecasting Models 

A common issue in methodologies for constructing PIs from point predictions 
generated by data-driven models is the reliance on assumed data distributions. 
Although these distribution assumptions can streamline the PI construction process 
by simplifying forecasting error considerations, they can lead to complications if 
the actual data deviates from the assumed distribution. As a result, such methods 
are often not well suited for real-world applications and tend to be computationally 
intensive. Therefore, we developed two WPPF models based on the Lower Upper 
Bound Estimation (LUBE) method [6]. The key benefit of the LUBE method is its 
ability to simplify PI construction, as it only requires an ANN to directly estimate 
the lower and upper bounds of a PI. In order for the ANN to generate two point 
forecast time series, corresponding to the upper and the lower bounds of the PIs, it 
needs two neurons in the output layer that represent these bounds. 

3.2.2.1 Singe-Objective Optimization 

An improved Particle Swarm Optimization (PSO) algorithm was chosen for the 
calibration of the LUBE-based data-driven model. PSO is a metaheuristic opti-
mization technique within the realm of swarm intelligence. Initially introduced 
as an evolutionary computation method, PSO addresses the optimization of both 
continuous and discontinuous functions in decision-making problems [17]. In PSO, 
each potential solution is represented by a particle within a swarm. During each 
iteration of the optimization process, particles explore the solution space, offering 
possible solutions to the problem at hand. The movement of the particles in the 
solution space is determined as follows: each particle is initially assigned a random 
position, representing a potential solution for that iteration of the optimization 
problem. The particle’s movement is then influenced by its current movement 
direction, its best position found so far within the solution space, and the best 
position found so far by the swarm as a whole. A fitness function evaluates the 
position of each particle during each iteration, indicating how close it is to the 
optimal solution. Each particle memorizes its best position as pbest ., and the best 
position obtained considering the whole swarm as gbest .. The equations used to 
update the velocity and position of each particle in each iteration are the following: 

. vn(t) = wvn(t − 1) + c1r1( pbest,n − xn(t − 1)) + c2r2( gbest − xn(t − 1))
(3.1) 

.xn(t) = xn(t − 1) + vn(t − 1) (3.2)
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where vn . and xn . represent the velocity and location of the nth
. particle at iteration t , 

r1 ., r2 . ε . [0, 1]. are random variables, c1 ., c1 . ε . [1,2] are acceleration constants, and w 
is the inertia weight that is represented by

.w = wmax − ( wmax − wmin)
t

tmax

(3.3) 

where wmax . and wmin . define the initial and final inertia weights, respectively, and 
tmax . is the maximum number of iterations. To enhance the global search capabilities 
of the particles and avoid local optima entrapment, their movement is further 
enhanced by an adaptive, Gaussian mutation operator. 

The optimization of the final model is posed as a single-objective approach, by 
minimizing the Coverage Width Criterion (CWC): 

.CWC = 1

N

N∑

i=1

( ui − li ) + γ e−h( 1
N

∑N
i=1(ci )−cl) (3.4) 

where γ . is a binary parameter that equals 1 when the average coverage of the PIs is 
less than the nominal confidence level cl. The CWC achieves a trade-off between the 
accuracy and the sharpness of the PIs, as it aims to satisfy the pre-defined confidence 
level with the sharpest PIs possible. 

In order to identify the optimal ANN structure for the proposed model, a k-
fold cross-validation technique is employed. Feed-forward ANNs are utilized, with 
the number of neurons in the hidden layers varying from 1 to 20 in increments 
of 1 neuron. The k-fold cross-validation is applied to the training dataset to keep 
it distinct from the test set. In this method, the training set is divided into k 
complementary folds, with k−1. folds used for training the ANNs and the remaining 
fold for validation. This study implements a fivefold cross-validation process. PSO 
is then applied to optimize the ANN’s weights and biases. Beyond determining the 
optimal ANN structure, a fivefold cross-validation is also conducted to establish the 
optimal number of particles in the PSO algorithm’s swarm. Wavelet transformation 
was applied to decompose the wind power time series into simpler sub-series, and 
enhance data preprocessing. The provided wind power time series is decomposed 
into an approximation sub-series and four detail sub-series using a db4 mother 
wavelet function. The generated sub-series serve as inputs for the proposed LUBE-
based ANN model, ultimately improving the model’s overall accuracy. 

3.2.2.2 Multi-Objective Optimization 

Preserving the multi-objective nature of PI optimization (accuracy maximization— 
sharpness maximization) help reduce the overall induced bias by avoiding the 
artificial adjustments required to merge multiple contradicting objectives into one 
[23]. Furthermore, metaheuristic algorithms are generally more effective with less
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induced bias. Therefore, a multi-objective optimization framework was selected for 
the optimization of the second proposed WPPF model [20]. 

The multi-objective optimization framework is formulated as follows: 

.

maximize 1
N

∑N
t=1 ct

minimize 1
R

√
1
N

∑N
i=1( ui − li ) 2

subject to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
N

∑N
i=1 ci � cl (Constraint 1)

ci =
{
1 if li � yi � ui

0 else
(Constraint 2)

0 � li < ui � 1 (Constraint 3)

(3.5) 

The problem objectives and constraints are outlined in 3.5, which focus on 
maximizing PI accuracy and sharpness. Specifically, the first objective maximizes 
the Prediction Interval Coverage Probability (PICP), which represents the average 
coverage of the PIs, while the second objective minimizes to the Prediction Interval 
Normalized Root Width (PINRW), which measures the normalized root of the 
average squared width of the PIs [16]. A smaller PI width indicates greater 
sharpness. The multi-objective problem formulation includes three constraints: the 
average coverage of the PIs must meet or exceed the pre-defined nominal confidence 
level. The parameter ci . is a binary variable indicating whether an actual observation 
falls within the corresponding PI. Additionally, PI bounds are constrained between 
0 and 1, corresponding to zero and nominal wind power generation, respectively, 
while the upper and lower bounds of each PI must differ to prevent generating point 
predictions. 

To effectively capture the temporal autocorrelation of the wind power time series, 
the feed-forward ANN of the first proposed model was replaced with a recurrent 
ANN. Due to the already increased complexity of the multi-objective approach, 
a nonlinear auto-regressive network with exogenous inputs (NARX) was selected. 
The NARX network is a straightforward data-driven model that effectively captures 
temporal dependencies in time-series data without compromising efficiency. This 
makes it a suitable choice for the proposed multi-objective optimization approach. 
The NARX network’s core architecture resembles that of a feed-forward ANN, but it 
incorporates lagged output feedback into the input, along with other external inputs. 

The architecture of the NARX network was determined as a result of a co-
optimization process applied on the proposed hybrid multi-objective LUBE-based 
model. Extensive testing was conducted to determine the optimal structure of the 
NARX network. A second hidden layer was found to be necessary for modeling 
more complex features of WPPF inputs and outputs. Although adding more hidden 
layers can marginally enhance the forecasting performance in some cases, it also 
significantly increases computational complexity. To support the LUBE method 
with minimal computational overhead, feedback is provided by both outputs 
separately rather than combining them into a single value. This approach also 
reduces the induced bias in the model, which is advantageous for metaheuristics-
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based optimization. Feedback is given at two different lagged time steps, effectively 
capturing the temporal interdependencies in the wind power generation time series. 

The employed Multi-Objective Improved Adaptive PSO (MOIAPSO) algorithm 
builds upon the classic multi-objective PSO described in [11], with enhancements 
through the use of an adaptive grid [10] and binary tournament selection for the 
selection of the swarm’s leader. These enhancements are essential for balancing the 
trade-off between forecasting accuracy and training time. The adaptive grid pro-
motes global exploration by increasing diversity among the stored non-dominated 
solutions, while the binary tournament method helps reduce overall training time. 
After evaluation, a repository is established to store non-dominated solutions, with 
the least diverse solutions being discarded in cases of repository overflow. The 
solutions in the repository are mapped according to their performance on each 
objective. An adaptive grid is then constructed to encompass all solutions and assess 
their diversity. Each hypercube of the grid is assigned a crowding index based on the 
number of solutions it contains, with a higher index indicating lower diversity. The 
grid dimensions are adjusted dynamically to accommodate all repository solutions. 
Binary tournament selection is employed to choose the swarm leader from the 
repository solutions, based on the crowding index. Mutation is applied to the new 
positions, which are updated using Eqs. 3.1 and 3.2. A particle’s personal best 
position is updated if it is dominated by its current position; if the current position 
and the personal best position are nondominant relative to each other, the personal 
best is chosen randomly. Further information can be found in [20]. 

3.2.3 Results and Discussion 

The proposed mid-term WPPF approaches are evaluated to estimate their effi-
ciency and accuracy. The proposed single-objective optimization approach (LUBE-
PSO-CWC) is compared with a Bootstrap Extreme Learning Machine (BELM) 
model, while the proposed multi-objective optimization approach (NARX-LUBE-
MOIAPSO) is compared with a Chance Constrained Extreme Learning Machine 
(CCELM), a hybrid Long Short-Term Memory (LSTM)-Kernel Density Estimation 
(KDE) model, as well as a hybrid LSTM-LUBE model, which is optimized with 
the Non-dominated Sorting Genetic Algorithm II (NSGA II). All models were 
developed in Python, and experiments were conducted on an AMD Ryzen 5 
3600X 6-Core Processor CPU (3.80GHz) desktop computer with 16 GB of RAM. 
The CWC and the Continuous Ranked Probability Score (CRPS) are used as 
probabilistic evaluation metrics. CRPS is calculated as follows: 

.CRPS = 1

N

N∑

i=1

∫ ∞

−∞
( F (zi) − l( zi − yi) ) 2 dz (3.6) 

where F is the CDF of the generated forecasts and l is the Heaviside step function.
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Table 3.5 Overall comparison of LUBE-PSO-CWC and BELM models 

Comparisons LUBE-PSO-CWC BELM Difference (%) 

Average CWC 48.7056 51.2942 −5.05 

Average CRPS 0.096859 0.10609 −9.53 

Average run time (s) 126 27 366.67 

Number of cases with best CWC 7 1 600.00 

Number of cases with best CRPS 7 1 600.00 

Table 3.6 Aggregated results of proposed NARX-LUBE-MOIAPSO model 

Model CRPS CWC Average training time 

NARX-LUBE-MOIAPSO 48.7056 51.2942 −5.05 

LSTM-LUBE-NSGA II 0.096859 0.10609 −9.53 

LSTM-KDE 126 27 366.67 

CCELM 7 1 600.00 

In Table 3.5, an overall comparison between BELM and the proposed LUBE-
PSO-CWC model is presented for the first case study (GEFCom 2014). The average 
CWC of LUBE-PSO-CWC is 0.487056, which is 5.05% less than the average CWC 
of BELM. The average PICP of LUBE-PSO-CWC is 0.929234, which is 2.29% 
more than the average PICP of BELM. In summary, both the average coverage rate 
(CWC) and the distribution of the forecasts (CRPS) are improved with the proposed 
model. As expected, however, BELM is faster, since its core consists of ELMs. 

The aggregated results for the second case study are presented in Table 3.6.  The  
proposed model clearly outperforms LSTM-KDE and CCELM for all evaluation 
metrics. LSTM-KDE and CCELM are the main competitors of the proposed model, 
due to their relative proximity regarding their computational complexity. Compared 
to LSTM-LUBE-NSGA II, the proposed model generates slightly worse results. 
Specifically, the proposed model’s performance regarding CRPS is 6.7% worse than 
the performance of LSTM-LUBE-NSGA II. However, the average training time 
required for the proposed model is approximately 75% less than that required for 
LSTM-LUBE-NSGA II.

Figure 3.7 illustrates the PIs generated for 1 WT by the proposed NARX-LUBE-
MOIAPSO model on a relatively “difficult” day, in which wind power fluctuations 
are frequent and intense. The larger the forecasting horizon, the higher the uncer-
tainty of the forecast. This is mainly due to the inherited error of the meteorological 
parameter forecasts, which is propagated to the probabilistic WPF model. The 
proposed WPF model captures the wind power time-series behavior sufficiently up 
to about an 8-hour-ahead forecasting horizon. Hence, the proposed model is suitable 
for forecasts from one to several hours ahead (intra-day forecasting).
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Fig. 3.7 24-hour-ahead PIs generated for different confidence levels by the proposed NARX-
LUBE-MOIAPSO model, as well as the real power output of the corresponding WT 
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Chapter 4 
Online HVAC Control for Energy 
Efficiency and Thermal Comfort 

Charalampos Marantos, Christos Sad, Kostas Siozios, 
and Dimitrios Soudris 

Building facilities are increasingly becoming active participants in the evolving 
energy market. The growing demand for energy efficiency, combined with rapid 
advancements in renewable energy and smart-grid IoT technologies, is driving the 
need for autonomous control solutions, particularly for energy-intensive building 
subsystems such as heating, ventilation, and air-conditioning (HVAC). HVAC 
systems play a crucial role in maintaining optimal indoor environments but consume 
significant amounts of energy. In addition, utilities and information, such as market-
driven pricing, are becoming increasingly accessible to end users. This allows 
consumers to make more informed decisions about building energy consumption 
and encourages the adoption of more efficient energy practices by promoting energy 
use during low-price periods and discouraging heavy consumption during peak 
times. 

The ongoing developments in smart grids, energy markets, and IoT technologies 
present both opportunities and challenges. On one hand, smart HVAC control sys-
tems can now be designed to automatically adjust their operation based on real-time 
conditions such as occupancy, weather forecasts, and energy prices, maximizing 
thermal comfort for occupants. On the other hand, the continuous demand to reduce 
energy consumption and carbon footprints, along with the dynamic nature of energy 
pricing, has introduced a new priority for these systems: energy efficiency. For 
example, when renewable sources are more abundant, the HVAC system can be 
programmed to operate more intensively, ensuring the building is adequately cooled 
or heated. Conversely, when energy is purchased for the main grid and prices peak, 
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the system can be scaled back to reduce costs without significantly compromising 
thermal comfort. 

Such intelligent control mechanisms are becoming increasingly important as 
buildings transition from passive energy consumers to active participants in the 
energy market. These solutions not only enhance the sustainability of building 
operations but also reduce operational costs and carbon footprints, contributing to 
the development of green, smart cities. This shift toward smarter, more responsive 
HVAC systems represents a major advancement in building energy management 
[3]. In this context, this chapter presents a low-complexity online HVAC control 
solution that targets existing buildings and optimizes both energy consumption 
and thermal Comfort, without requiring detailed building models. The presented 
solution not only exhibits negligible complexity enabling its implementation on low-
cost embedded devices (e.g., smart thermostats) without affecting the quality of the 
derived results but also offers shorter design times, alleviating the time-to-market 
pressure. 

4.1 Problem Definition 

This section introduces the template of our case study and the problem definition. 
The study targets a micro-grid environment encompassing multiple energy sources 
(i.e., purchasing energy from the main grid and installed PV systems), as well as 
the HVAC systems, which are the primary energy consumers. The focus is on the 
orchestration task: determining the HVAC thermostat set-points. 

To support the HVAC control task, various installed sensors collect data related to 
weather (temperature, humidity, solar radiation, and forecasts), building conditions 
(indoor temperature and humidity), and residents’ activities. This data is transmitted 
to the main controller, which computes optimal actions to co-optimize thermal 
comfort and energy cost metrics. 

Before proceeding to the details of the introduced orchestration task, we must 
discuss the analytical form of the targeted HVAC operation optimization problem. 
We formulate this as a weighted-sum multi-objective optimization problem (MOO) 
(Eq. 4.1). The two objectives—energy consumption (E) and occupants’ thermal 
comfort (C)—are minimized and ω . is the weight/trade-off between them. It’s worth 
mentioning here that thermal comfort (C) is quantified as the Predicted Percentage 
of Dissatisfied occupants. Also, si . denotes the input variables corresponding to the 
temperature set-points of the HVAC system at timestep i. Finally, the objective 
functions are influenced by an external vector of environmental variables, αi .. 

.Min{ω × E(st , αt ) + (1 − ω) × C (st , αt )} (4.1) 

Providing an accurate analytical description and a plug&play solution at the 
same time is challenging due to the need for complex prior modeling for each 
new/existing building. Consequently, the problem addressed in this chapter has the
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following characteristics: (i) the objective functions depend not only on the tem-
perature set-point but also on the building’s environment and occupants’ behavior 
while their detailed form is unknown; (ii) the controller actions can be evaluated 
discretely at each timestep and no prior information is given to the solver. 

By considering these properties, the chapter presents an online plug&play 
solution that effectively manages HVAC operations in a dynamic and data-driven 
manner (without any prior information), ensuring both energy efficiency and 
occupant comfort optimization. 

4.2 Related Work 

The problem addressed in this chapter is a well-known challenge that has gained 
significant attention from researchers over the years [18, 23, 25]. Traditionally, 
the most accurate solutions have relied on detailed modeling of buildings and 
HVAC systems, often applying control theory methods or model predictive control 
(MPC) [4]. While these methods can achieve high accuracy, they are complex and 
resource-intensive, both in terms of design time and operational requirements. The 
accurate modeling of all the dynamics of a building is a very challenging task, 
making such approaches mostly applicable to new constructions. Furthermore, the 
computational requirements of these control algorithms, which typically involve 
the solution of non-convex, high-dimensional mathematical problems [5], make 
their implementation feasible only to enterprise environments, where the necessary 
computational resources are available. 

However, recent advancements in smart IoT systems, coupled with the growing 
need for solutions that can be applied to existing buildings [12], including residential 
ones, have led to the development of smart thermostats and smart stand-alone, 
building-agnostic air-conditioners. These solutions are designed to be plug&play, 
generic, and cost-effective. Unlike traditional methods, they often rely on online 
data analysis and algorithms that adapt in real time to changing conditions. 

Several approaches have been explored in this domain, including genetic algo-
rithms [8], empirical models [24], simulation optimization [7], event-based opti-
mization (EBO) [23], fuzzy logic [2, 9, 17], and artificial neural networks (ANNs) 
[10]. These methods, while effective in the operation phase, often have limited 
flexibility when applied to existing buildings. They typically require a pretraining 
phase based on historical data, which can take years to collect, leading to long design 
times and creating solutions that are tightly bound to a specific building, making 
them unsuitable as a plug&play option for existing structures. Additionally, these 
approaches impose significant computational and storage complexities, particularly 
during the training phase. 

A modern approach that has gained considerable attention in recent years 
is reinforcement learning (RL). RL is one of the most promising methods for 
providing a “black-box” and plug&play solution [1, 22]. In RL-based solutions, 
the optimization problem is modeled to consist of a set of states, a set of actions,
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and a reward function. At each timestep, the agent (the HVAC system’s controller) 
samples the current state of the building and computes the next thermostat set-
point (action), with the goal of maximizing the received reward (optimizing energy 
consumption and thermal comfort) [13, 14]. 

However, RL-based solutions come with a set of challenges. One major issue is 
the stability—RL systems can take a significant amount of time to stabilize, which 
can be problematic in dynamic environments. Additionally, when external factors 
such as weather conditions change or when parameters of the reward function, such 
as the weight ( ω .)  in  E  q. 4.1, are modified, the system may need to be retrained from 
scratch. Finally, another limitation is the risk of the agent getting trapped in local 
minima during the optimization process, necessitating sophisticated exploration 
mechanisms. 

4.3 Decision-Making Mechanism 

The introduced solution aims to improve and mitigate the limitations of using 
the aforementioned “black-box” approaches as well as to be flexible and able of 
supporting multiple operating scenarios. 

The enabler of the presented approach is the introduction of simple (low 
complexity) models that achieve improved accuracy based on only a small subset of 
the received sensors data. 

4.3.1 Preprocessing Steps 

First of all, the system collects the data from the sensors and builds tuples of 
(Outdoor temperature (T out

t .), Solar radiation ( Rt .), Indoor temperature ( T in
t .), 

Indoor humidity ( Ht .)), connected with an Energy consumption ( Et .) and a calculated 
Thermal Comfort ( Ct .) for each timestep (t) to build the dataset that will support the 
control task (Eq. 4.2): 

.αt = {[T out
t , Rt , T

in
t , Ht ], Et , Ct } (4.2) 

Regarding the energy cost ( Et .), if the expected energy load of the building 
at timestep t exceeds the energy available from the photovoltaic panels (PVs), 
the additional demand is met by purchasing energy from the main grid at the 
prevailing price. Conversely, if the energy requirements are within the capacity of 
the microgrid’s renewable sources, the building’s energy needs are fully met by 
these sources, eliminating the need for additional grid energy.
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Then, the cost is calculated based on Eq. 4.1, as a weighted sum of the two 
objectives ( Et . and Ct .), while the weighting factor (ω ∈ [0, 1].) gives the relative 
importance between them. 

4.3.2 Selective Historical Data Management 

The key enabler of the proposed online method is the efficient management of 
historical data collected by the building’s sensors. Rather than storing the entire 
raw data, this approach selectively retains data corresponding to specific days or 
hours, optimizing both storage and computational resources. 

To achieve this, the method employs two complementary sliding window 
mechanisms, the coarse-grain and fine-grain windows, as illustrated in Fig. 4.1.  The  
coarse-grain window retains data from the last x days, while the fine-grain window 
focuses on storing data from specific periods within each day [15]. 

Fig. 4.1 Efficient historical data selection
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This selective data storage strategy significantly reduces the amount of data that 
needs to be stored, making it feasible to use simple and low-complexity methods, 
such as linear regression, for supporting the HVAC control. By using the proposed 
sliding windows, the online HVAC control method not only conserves storage space 
but also accelerates the learning process, allowing for fast adaptation based on 
a limited amount of data. This model-free solution is particularly well-suited for 
deployment on low-cost embedded devices commonly found in smart thermostats. 

In the following sections, we will present a wide range of experiments that 
demonstrate the effectiveness of this method. These experiments highlight how this 
approach contributes to the development of fast yet accurate models for estimating 
energy consumption and thermal comfort across different buildings, all without the 
need for extensive prior modeling. 

4.3.3 Core Decision-Support Algorithm 

The core decision-support process for online HVAC control is illustrated in Fig. 4.2. 
This process begins with the collection of data from various sources, including 

Fig. 4.2 Core decision-support algorithm
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building sensors, occupant activity, weather forecasts, and user input regarding 
available funds and the desired operational scenario. This data is then efficiently 
managed and stored using the selective data management mechanism described 
earlier. 

Once the relevant data is selected, it is used to refine two key regression 
models: one for predicting energy consumption and another for forecasting thermal 
comfort. These models are then fed into the final decision-making step, which 
employs a Multiple-Choice Knapsack algorithm. This algorithm is responsible for 
determining the optimal HVAC thermostat set-points according to the specified 
operating scenario [16]. 

The final stage of this process is the decision-making step, which involves the 
application of a Multiple-Choice Knapsack algorithm. This algorithm is responsible 
for calculating the optimal HVAC set-points based on the given operating scenario. 
The Multiple-Choice Knapsack Problem (MCKP) is defined as follows: a set of 
items is divided into distinct groups, and exactly one item from each group must be 
selected to be included in the knapsack. The goal is to maximize the total value of 
the selected items, while ensuring that the sum of their weights does not exceed the 
knapsack’s capacity. However, in our application, the objective is inverted as we aim 
to minimize total cost rather than maximize value and thus each item is assigned a 
negative value (representing cost). 

The algorithm supports three distinct operating scenarios: 

• Scenario 1: Optimize Both Energy Consumption and Thermal Comfort 
In this scenario, the weights of the items are set to zero, and the negative value 
(cost) is defined as the weighted sum of energy consumption and the predicted 
percentage of dissatisfied (PPD) occupants in terms of thermal comfort, as 
described in Eq. 4.1. 

• Scenario 2: Optimize Energy Consumption Without Violating Thermal Comfort 
Constraints 
Here, the negative values (cost) correspond to the energy consumption of each 
option, while the weights represent the PPD. The objective is to minimize energy 
consumption while adhering to thermal comfort limits. 

• Scenario 3: Optimize Thermal Comfort Without Exceeding the available funds 
for Energy 
In this scenario, the negative values (cost) are derived from the PPD values, 
and the weights correspond to the energy consumption of each choice. The 
knapsack’s capacity is defined by the available funds for energy, ensuring that 
thermal comfort is maximized without surpassing the budget. 

By adapting the Multiple-Choice Knapsack algorithm to these specific scenarios, 
the decision-support system ensures that the HVAC control strategy aligns with 
the user’s priorities, whether they focus on energy efficiency, thermal comfort, or 
a balanced approach to both.
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4.4 Energy and Thermal Comfort Estimation 

As discussed earlier, efficient data management using the two complementary 
sliding window mechanisms is the key enabler for employing simple models, such 
as linear regression or decision trees, for energy consumption and thermal comfort 
estimation. In this section, we will present the design, implementation, and results 
of this approach. 

4.4.1 Preparing the Data 

At each timestep, data collected from the building sensors are stored in the 
system’s memory, utilizing the coarse-grain sliding window mechanism presented 
in Sect. 4.3.2. This approach ensures that data older than the coarse-grain window 
size are discarded in a First-In-First-Out (FIFO) manner. The format of the stored 
data is detailed in Table 4.1. Prior to applying the energy and thermal comfort 
estimation models, the fine-grain sliding window mechanism is employed. This 
process selectively forwards only a subset of the stored data, corresponding to 
specific hours of the day, to the estimators. 

4.4.2 Energy Estimation 

To evaluate the effectiveness of the proposed energy estimation solution, we applied 
a linear regression approach on the data retrieved by the proposed sliding window 
selection to predict the energy consumption for the next hour in three different types 
of buildings. The first test was conducted using a simulation in the widely accepted 
EnergyPlus software.1 This approach offers several advantages, such as the ability to 
modify temperature set points, HVAC configurations, location, weather conditions, 
and occupant activity, allowing for the testing of various scenarios. However, to 
address the possibility that the simulation and the building models created for the 
experiments may not fully replicate real-world conditions, we also evaluated the 

Table 4.1 Stored data 
collected by the sensors 

⎡
⎢⎢⎢⎢⎣

T out
1 R1 T in

1 H1

T out
2 R2 T in

2 H2
.
.
.

.

.

.
.
.
.

.

.

.

T out
m Rm T in

m Hm

⎤
⎥⎥⎥⎥⎦

.

⎡
⎢⎢⎢⎢⎣

E1

E2
.
.
.

Em

⎤
⎥⎥⎥⎥⎦

.

⎡
⎢⎢⎢⎢⎣

C1

C2
.
.
.

Cm

⎤
⎥⎥⎥⎥⎦

.

1 https://energyplus.net/ 

https://energyplus.net/
https://energyplus.net/
https://energyplus.net/


4 Online HVAC Control for Energy Efficiency and Thermal Comfort 67

proposed approach using real-world residential building data (a subset of residential 
buildings) available online [11]. It is important to note that this energy data includes 
not only HVAC energy consumption but also the total energy consumption of the 
building, including other appliances. 

The EnergyPlus building model is an office building, located in Crete Greece, 
operating from 9am to 6pm every day. The results for a representative week of the 
year are shown in Fig. 4.3. The accuracy is more than 95% for the entire year. 

When it comes to residential buildings, energy estimation becomes more chal-
lenging. Unlike companies and universities, residential occupants do not typically 
follow a strict schedule, and the use of appliances, HVAC configurations, and 
other factors can be more unpredictable. However, as shown in Fig. 4.4, the energy 
estimation for the next hour remains acceptable, achieving up to 86.9% accuracy, a 
Spearman correlation between the actual and the predicted values of 0.87, and an 
R2-score of 0.69, largely because it is closely related to the energy consumption of 
the previous hour. 

Fig. 4.3 Energy estimation for the office building simulated in EnergyPlus 

Fig. 4.4 Energy estimation for residential buildings
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Fig. 4.5 Accuracy decrease for future hours energy estimation 

Fig. 4.6 Estimation accuracy increase for using decision tree instead of linear regression 

Predicting energy consumption for several hours ahead proves more difficult, 
and the accuracy of predictions decreases. We observe that decision tree exhibits 
increased accuracy for future hours estimations [19], while linear regression remains 
the best for estimating the energy of the next hour. Figures 4.5 and 4.6 illustrate the 
estimation accuracy for the next 8 hours and the percentage increase of accuracy 
for using decision-tree estimators instead of linear regression respectively. Despite 
the observed reduction in accuracy, these results are still within an acceptable range 
and provide valuable inputs for the proposed HVAC control algorithm, as will be 
demonstrated in the rest of this chapter. 

4.4.3 Thermal Comfort Model 

The thermal comfort estimation model is based on the observation that it follows a 
quadratic function, as illustrated schematically in Fig. 4.7. Specifically, the HVAC 
configuration influences only the temperature, which in turn affects thermal comfort. 
Figure 4.7 demonstrates the Predicted Percentage of Dissatisfied (PPD) values
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Fig. 4.7 PPD estimation with the proposed and the reference Fanger [6] models as a function of 
indoor temperature 

for thermal comfort, according to Fanger’s model [6], while keeping all other 
factors (such as occupants’ activity, clothing, etc.) constant and varying only the 
temperature. Consequently, the proposed thermal comfort estimation is expressed 
in Eq. 4.3, by refining the θ1 . and θ2 .weights [16, 20, 21]. To achieve this, the HVAC 
controller solves the minimization problem outlined in Eq. 4.4. For thermal comfort 
estimation, the dataset used as input to this minimization, along with the associated 
weights θc ., is provided in Eq. 4.5. 

.Cest = θc
0 + θc

1 × T in + θc
2 × T in2 (4.3) 
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4.4.4 Impact of Selective Historical Data on Models Accuracy 

The impact of the historical data management strategies described in Sect. 4.3.2 
is illustrated in Fig. 4.8. Based on these results, we have chosen a coarse-grain 
window size of 15 days and a fine-grain window size of 3 hours. This selection 
effectively minimizes the root mean square error (RMSE) for both energy and 
comfort estimations. Specifically, with the coarse-grain window, we achieve an
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Fig. 4.8 RMSE analysis for quantifying the impact of the data selection window sizes to the 
energy estimation accuracy and the thermal comfort estimation accuracy 

RMSE of 2.674 kWh for energy and 0.31% for the Predicted Percentage of 
Dissatisfied (PPD) occupants. The incorporation of the fine-grain window further 
reduces the RMSE, resulting in values of 2.251 kWh for energy and 0.291% for 
PPD. 

4.5 Experimental Results 

4.5.1 Experimental Setup 

To evaluate the proposed algorithm, static data retrieved from buildings is insuffi-
cient, as we need to assess the performance of the HVAC configurations generated 
by the control algorithm in a dynamic environment. Therefore, a simulator is 
required. For this purpose, we employed EnergyPlus, a high-quality building 
simulation software, widely used by researchers, practitioners, and industry pro-
fessionals. 

Simulating an online algorithm, such as the one proposed, requires the ability to 
adjust thermostat set points in real time during the experiment. To facilitate this, we 
utilized a complementary program that communicates with EnergyPlus—namely,
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the Building Controls Virtual Test Bed (BCVTB). BCVTB allows users to interface 
with MATLAB, enabling real-time adjustments of building parameters. 

The simulated buildings used in this study are real office buildings located in 
Crete, Greece, and were designed as part of the PEBBLE FP7 EU project. 

4.5.2 Operating Scenarios: Comparison Against Fixed 
Set-Points 

The first scenario focuses on minimizing a balanced cost that equally considers both 
energy consumption and thermal comfort (with the weight factor ω . in Eq. 4.1 set 
to 0.5). The results, compared against maintaining constant thermostat set points 
at a fixed temperature configuration, are presented for a representative winter and 
summer day in Fig. 4.9. These results demonstrate that the proposed controller 
performs very well, achieving significant improvements in both energy efficiency 
and thermal comfort. 

The second scenario aims to optimize energy consumption while ensuring that 
the Predicted Percentage of Dissatisfied (PPD) occupants does not exceed a certain 
threshold (with ω . in Eq. 4.1 set to 1). According to the ASHRAE standard, a PPD 
level below 10% is considered acceptable for occupants. Based on the results for 
this scenario, shown in Fig. 4.10, the proposed control solution achieves to a 48% 
reduction in energy consumption compared to the fixed thermostat configurations 
that satisfy the thermal comfort standards. 

The third scenario addresses optimizing thermal comfort without exceeding 
the available energy budget (funds). For the demonstration results presented in 
Fig. 4.11, we selected two different budget levels per week: a high-funds case and a 
low-funds case. These selections were not entirely random as they took into account 
the weather conditions and the average consumption at fixed temperature settings. 
In the high-funds scenario, we observe that the PPD level approaches 5%, which, 
according to the thermal comfort model, is considered the optimal score, as there 

Fig. 4.9 Proposed controller efficiency against fixed thermostat values (balanced scenario)
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Fig. 4.10 Energy and PPD evaluation for the Scenario 2 vs fixed values 

Fig. 4.11 Evaluate energy and PPD variation for alternative Scenario 3 

will always be a small percentage (around 5%) of occupants who are dissatisfied 
due to individual preferences. In the low-funds case, while PPD increases, it remains 
within standard limits. Additionally, the proposed solution adheres to the budget 
constraints for all weeks, except in rare instances within the low-funds scenario 
where it was not possible to meet the PPD standard limit, without exceeding the 
very low budget.
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4.5.3 Comparison Against Relative Approaches 

In this section, we compare the proposed approach with several related solutions. 
Specifically, the comparison is made in the balanced scenario (Scenario 1), where 
energy consumption and thermal comfort are given equal importance (ω = 0.5. in 
Eq. 4.1). The results are based on a yearlong experiment and are summarized in 
Table 4.2. The solutions compared are as follows: 

• Fixed Thermostat Configurations: This approach involves maintaining a constant 
thermostat setting (e.g., fixed temperature of 20 ◦C.), without any adjustments. 

• Fmincon (Simulation-Based): This solution relies on repeated simulations of 
a modeled building. For our evaluation, the EnergyPlus building models were 
used, and results were obtained after 3000–5000 iterations. In this comparison, 
Fmincon is considered the most accurate solution, as it uses the same building 
models employed in our experiments. In a real-world scenario, these results 
would be achievable if perfectly accurate building models were available. 

• Reinforcement Learning [13, 14]: This solutions use a “black-box” approach 
based on reinforcement learning, optimizing HVAC control without explicit 
modeling of the building or the objectives. 

• SVM-Min [15]: This is a preliminary version of our proposed solution, com-
bining sliding window data management with support vector machine (SVM) 
estimators. 

Based on these results, we conclude that the proposed approach delivers superior 
performance. Specifically, it outperforms fixed thermostat configurations by 40% 
to 150%, is 5.5% better than the Reinforcement Learning approach, and is only 
3% less effective than the best possible results achieved with a 100% accurate 
building model (Fmincon). Moreover, the proposed solution is highly efficient in 
terms of computational complexity, making it suitable for implementation on low-

Table 4.2 Balanced scenario annual results comparison against other methods 

Method Energy Consumption Avg. PPD Norm. Cost 

Fixed 20 ◦C. 66967 kWh 24.9% 0.89 

Fixed 21 ◦C. 62939 kWh 17.4% 0.72 

Fixed 22 ◦C. 61223 kWh 11.6% 0.59 

Fixed 23 ◦C. 61955 kWh 7.9% 0.52 

Fixed 24 ◦C. 65191 kWh 6.4% 0.51 

Fixed 25 ◦C. 70467 kWh 7.2% 0.56 

Fixed 26 ◦C. 77359 kWh 10.2% 0.66 

Fixed 27 ◦C. 85680 kWh 15.3% 0.81 

Fmincon (Simulation-based) 34936 kWh 6.1% 0.33 

Reinforcement Learning [13, 14] 34601 kWh 7.7% 0.36 

SVM-Min [15] 36767 kWh 6.5% 0.35 

Proposed 36399 kWh 6.4% 0.34
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end smart devices, such as smart thermostats. Notably, the execution time is 8 
orders of magnitude lower than that of the Fmincon MPC solution, requiring only 
0.004 secs on an ARM Cortex-A57 for Scenarios 1 and 2. Even for the more 
demanding Scenario 3, which involves evaluating one week ahead and solving a 
more complex Knapsack problem at each timestep, the execution time does not 
exceed 0.03 seconds. 

4.6 Conclusions 

A framework for designing a low-cost orchestrator targeting HVAC systems was 
introduced, aimed at solving the multi-objective problem of simultaneously improv-
ing building energy consumption and occupant’s thermal comfort. 

The problem formulation, the objectives and the proposed decision-making algo-
rithm, as detailed in this chapter, were designed to be flexible, supporting multiple 
operational modes/scenarios. These modes include balancing energy consumption 
with resident thermal comfort, minimizing energy use while maintaining acceptable 
thermal comfort levels, and maximizing thermal comfort without exceeding the 
available energy budget. The newly introduced models for estimating thermal 
comfort and HVAC energy consumption are both fast and accurate, exhibiting 
negligible complexity compared to similar implementations, without any loss in 
quality. 

Our experimentation validates the superiority of the proposed solution against 
relevant solvers, eliminating the need for accurate prior system modeling, as both 
functions describing energy consumption and thermal comfort are agnostic. The 
presented orchestrator demonstrates efficiency comparable to the initial offline 
solver, with only a 3% reduction in total cost savings but significantly lower 
complexity—approximately 8 orders of magnitude less—without relying on prior 
knowledge or system modeling. Consequently, the introduced solutions are well-
suited for low-cost embedded devices, such as smart thermostats, and enable shorter 
design times, thus reducing time-to-market pressure. 
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Chapter 5 
Multi-Timescale Energy Management 
Framework 

Daichi Watari, Dafang Zhao, Ittetsu Taniguchi, and Francky Catthoor 

In real-time energy management, fluctuations in renewable generation, such as 
photovoltaic (PV) systems, can result in significant energy losses and imbalances. 
Conversely, at slower time scales, scheduling distributed energy resources (DERs), 
such as battery systems and shiftable appliances, is crucial for shifting energy 
demand from peak to off-peak hours to reduce electricity costs. To bridge the gap 
between fast and slow time scales in energy management, this chapter introduces 
an online multi-time scale energy management framework for smart PV systems.1 

The proposed framework incorporates both coarse- and fine-grained time scales 
and iteratively solves three sequential optimization problems at predetermined time 
intervals. This multi-time scale approach reduces computational complexity while 
preserving solution quality. Furthermore, a short-to-middle term PV and hybrid 
equivalent-circuit battery model are employed for precise energy management. This 
framework enhances both modeling accuracy and computational efficiency in real-
time energy management systems (EMSs). Results demonstrate that the proposed 
framework can reduce electricity costs by up to 47.5% compared to baseline 
methods while maintaining reasonable computational times. 

1 This chapter is a refined and reproduced version of the paper to be published in Applied Energy 
[42], copyrighted by Elsevier. 
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5.1 Motivation and Objective 

With increasing environmental concerns, renewable energy sources, particularly 
solar and wind power, have been integrated into demand-side energy systems to 
reduce both CO2 . emissions and electricity costs [40]. However, renewable energy 
generation is inherently variable and difficult to control, with output fluctuating 
due to environmental factors such as cloud cover and wind speed. These variations 
can lead to supply-demand mismatches [24]. Smart energy systems incorporating 
renewable energy, battery storage, and demand control mechanisms offer potential 
solutions for improving energy efficiency and system resilience [27]. 

EMSs play a central role in smart energy systems by coordinating energy flow 
among appliances, batteries, renewable generation, and grid purchases [7]. These 
systems typically aim to optimize multiple objectives: reducing electricity costs, 
managing peak demand, and improving renewable energy utilization [28]. However, 
the variability of renewable sources can impact EMS performance [30]. Current 
systems often utilize battery storage operating at fast time scales to address these 
fluctuations [29], highlighting the importance of accurate battery modeling and 
appropriate integration of workload-dependent energy storage [5, 37]. 

Model predictive control (MPC) has shown promise in EMS applications for 
managing renewable energy variability and system dynamics. MPC enables sys-
tematic adjustment of control inputs by predicting and optimizing system behavior 
over defined time horizons. This approach has been applied to battery scheduling 
in conjunction with renewable energy forecasting to help manage uncertainties in 
smart energy systems [44]. 

Demand load control represents another important aspect of energy management 
[38]. Appliance scheduling, which coordinates load patterns with renewable gen-
eration and electricity prices [3, 26], allows flexible appliances to operate within 
specified time windows. While this approach can reduce costs and improve PV self-
consumption, it operates on a slower time scale than that required for managing 
rapid PV fluctuations. This temporal disparity introduces additional complexity to 
energy management. 

A fundamental challenge in smart energy systems lies in the inherent multiplicity 
of operational time scales, which poses significant computational and control chal-
lenges. These systems must simultaneously address two distinct temporal domains: 
rapid fluctuations occurring at the second level and longer-term variations spanning 
hours to days [12]. Specifically, while appliance scheduling decisions are typically 
made at daily or hourly intervals to optimize energy consumption patterns [36], the 
management of renewable energy fluctuations demands rapid, second-level control 
responses to maintain system stability. The significant difference between these time 
scales creates substantial computational challenges when attempting to integrate 
both control requirements into a single optimization framework. The challenge is 
particularly acute because the optimization objectives and system dynamics at each
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time scale are fundamentally different, yet inherently coupled through their effects 
on overall system performance. 

This chapter proposes a multi-time scale energy management framework for 
smart PV systems. The framework is designed for local energy networks that 
integrate PV generation, battery storage, and controllable loads across multiple 
buildings. The proposed approach implements MPC with two key components: 
(1) PV forecasting based on neural networks and thermal models [2] and (2) an 
equivalent circuit battery model that incorporates state-of-charge dynamics and I-
V characteristics [8]. To address the computational challenges while maintaining 
control performance, the framework employs a two-time scale structure with coarse-
grained and fine-grained time scales. This structure enhances both computational 
efficiency and modeling capabilities, ensuring that the system can respond effec-
tively to varying dynamics. 

The main contributions of this work are as follows: 

• Development of a two-time scale framework that systematically addresses both 
fast dynamics (second-level PV fluctuations and battery transient responses) 
and slow dynamics (hourly/daily appliance scheduling and demand profile 
management), enabling effective energy management across multiple temporal 
resolutions. 

• Integration of three detailed component models for precise energy management: 
a time-shiftable appliance model incorporating user preferences and operational 
constraints, a physics-based PV forecasting model providing second-level reso-
lution predictions, and an equivalent circuit battery model that captures nonlinear 
charge-discharge characteristics and state-dependent behavior. 

• Implementation of MPC that simultaneously manages PV forecasting uncertainty 
and battery state evolution while maintaining computational tractability. The 
controller systematically coordinates decisions across both time scales to achieve 
efficient real-time operation. 

• Comprehensive quantitative evaluation through simulation studies using mea-
sured PV and demand data, examining system performance under various 
PV forecasting errors (12–40%), different battery capacities (3–18 kWh), and 
multiple operational scenarios. The analysis demonstrates both computational 
feasibility and control effectiveness across different temporal resolutions. 

The remaining of this chapter is organized as follows: Sect. 5.2 discusses related 
work on energy management methodologies for smart PV systems. Section 5.3 
provides an overview of the proposed multi-time scale framework and the system 
models employed. Section 5.4 presents a detailed mathematical formulation of the 
energy management problem within the proposed framework. Section 5.5 demon-
strates the effectiveness of the proposed method through extensive simulations using 
measured data. Finally, Sect. 5.6 summarizes the key findings and contributions of 
this chapter.
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5.2 Related Studies 

EMSs have been extensively studied using various control methodologies to opti-
mize energy consumption and cost efficiency. Traditional approaches have focused 
on optimization-based scheduling for managing appliances and battery systems. 
Lokeshgupta et al. [25] proposed a home energy management system (HEMS) 
utilizing multi-objective mixed-integer programming (MIP) to simultaneously min-
imize electricity costs and peak power demands while evaluating battery investment 
economics for residential applications. Building on this approach, Dorahaki et 
al. [10] developed an advanced EMS using mixed-integer nonlinear programming 
(MINLP) that incorporates both electrical and thermal demand control alongside 
day-ahead energy storage scheduling. Their sensitivity analysis demonstrated the 
importance of coordinating electrical demand and battery utilization. However, 
these optimization-based approaches typically execute scheduling only once per 
day, lacking mechanisms to handle PV forecast errors or adapt to real-time changes 
in battery system states. 

To address these limitations, researchers have increasingly adopted MPC strate-
gies. Godina et al. [16] demonstrated MPC’s superiority over traditional ON/OFF 
and PID controllers for air-conditioning management under dynamic pricing, 
achieving significant improvements in both cost reduction and control effectiveness. 
This success led to broader applications, with Parisio et al. [32] extending MPC to 
multi-building scenarios by incorporating weather forecasts, demand predictions, 
and user preferences. Carli et al. [6] further validated MPC’s practical feasibility in 
real buildings, while Gan et al. [14] integrated renewable generation forecasting 
with MIP-based MPC for battery scheduling. These implementations typically 
utilize planning horizons of several days with coarse-grained resolutions (15–60 
minutes), focusing primarily on slow dynamics management. 

The challenges of real-time control at shorter time scales have led to alternative 
approaches. Rule-based controllers [43] and fuzzy logic systems [4] are commonly 
employed due to their computational efficiency. However, these methods cannot 
guarantee optimal solutions due to their reliance on simplified models and current-
state information. 

Recognizing the need to address multiple time scales simultaneously, researchers 
have explored hierarchical control structures. Abreu et al. [1] developed a two-layer 
MPC system for demand load management, while Lefort et al. [23] proposed a 
hierarchical EMS combining long-horizon scheduling with short-term operational 
control. Jin et al. [19] integrated day-ahead scheduling with intra-hour MPC 
adjustments for electric vehicle optimization with PV generation. Despite these 
advances, these approaches offer limited demand flexibility and employ simplified 
PV forecasting models. 

A notable attempt to bridge these gaps was made by Elkazaz et al. [11], who 
developed a two-layer home EMS combining 24-hour scheduling with real-time 
control. However, their use of basic PV forecasting and rule-based controllers 
limited the system’s ability to anticipate and respond to future fluctuations. The
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critical importance of accurate PV forecasting has been emphasized by both 
Ferrarini et al. [13] and Klingler et al. [21], who demonstrated its significant impact 
on overall system performance. 

Despite these advances, significant limitations persist in current research. Most 
studies employ linear battery models that fail to capture the inherently nonlinear 
behavior of battery systems. Additionally, insufficient attention has been paid to 
analyzing PV forecasting and battery states at short time scales. The inadequate 
consideration of fast dynamics in system operation frequently results in energy 
imbalances and increased losses during real-time operation. 

The proposed framework addresses these limitations by integrating both fast and 
slow time scales through a comprehensive approach that combines short-term PV 
forecasting with an electrical circuit-based battery model. This multi-time scale 
structure enables precise supply-demand balance management while minimizing 
electricity costs, effectively handling various dynamic elements including PV 
fluctuations, demand variations, and battery transient responses. 

5.3 Proposed Multi-Time Scale Energy Management 
Framework 

This section provides an overview of the proposed multi-time scale energy man-
agement framework and discusses the key concepts underlying its multi-time scale 
structure. 

5.3.1 Overview 

Figure 5.1 presents a comprehensive overview of the proposed framework, which 
integrates three principal components: an advanced PV forecasting model, a detailed 
battery model, and a mathematical formulation of the smart PV system. The 
framework’s primary objective function focuses on electricity cost minimization, 
with the system utilizing PV generation forecasts and electrical demand profiles as 
key input parameters. The resulting solution determines the amount of power/energy 
purchased, battery operational schedules, and temporal allocation of appliance 
usage. 

The framework operates through the following sequential control processes: 

1. Generation of PV production profiles utilizing two complementary forecasting 
approaches: (i) a high-resolution, fine-grained forecasting model for short-term 
predictions spanning 15–30 minutes with second-level temporal resolution and 
(ii) a coarse-grained forecasting methodology incorporating meteorological data 
for extended predictions up to several days.
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Fig. 5.1 Overview of multi-time scale energy management framework 

2. Formulation of a comprehensive mathematical optimization problem that incor-
porates these forecasted profiles, system constraints, and operational parameters, 
subsequently solved using specialized mathematical optimization algorithms. 

3. Computation of an economically optimal operational schedule that minimizes 
electricity costs from the utility grid. 

4. Evaluation of the derived optimal schedule through numerical simulation, 
enabling systematic assessment of the control strategy’s effectiveness under 
various operational scenarios and validation of the proposed framework’s 
performance. 

These control processes are executed iteratively at each discrete time step 
in accordance with the MPC methodology, which is elaborated in detail in the 
subsequent section. This systematic iterative approach facilitates dynamic real-time 
control, enabling continuous adjustment of the system’s energy balance in response 
to varying operational conditions and external perturbations. 

5.3.2 Concept of Model Predictive Control 

The proposed framework implements MPC for energy management. MPC has 
proven effective for controlling complex dynamic systems [15] and has shown 
particular utility in energy management applications [33]. The core mechanism of 
MPC involves computing control actions through the minimization of an objective 
function over a finite prediction horizon, while explicitly considering future system 
states. 

The MPC implementation operates through systematic prediction and optimiza-
tion steps, as shown in Fig. 5.2. At each sampling time, the controller predicts 
system behavior over a defined horizon. These predictions are used to formulate
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Fig. 5.2 Basic concept of MPC approach 

and solve an optimization problem that determines control actions. Following 
the receding horizon principle, only the first control action is applied, while the 
optimization is repeated at the next sampling instant with updated measurements 
and a shifted prediction window. 

The feedback structure inherent to MPC provides systematic handling of uncer-
tainties in both system dynamics and external disturbances. This feedback mecha-
nism is particularly relevant for renewable energy systems, where it helps manage 
variations in load demand and PV generation [31]. The ability to compensate for 
these uncertainties while maintaining operational constraints makes MPC especially 
suitable for systems with significant variability in generation and demand. 

5.3.3 Multi-Time Scale Approach 

The proposed framework adopts a multi-time scale structure to address the inherent 
temporal disparities in energy management systems. This approach integrates two 
distinct time scales through a unified optimization framework, as illustrated in 
Fig. 5.3. At each control point denoted by time index t , the framework executes 
multi-time scale optimization using the MPC approach, incorporating both forecast 
information and system states.
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Fig. 5.3 Proposed MPC approach combined with multi-time scale structure 

The coarse-grained time scale manages slow dynamics including demand vari-
ations and PV generation trends, enabling appliance and battery scheduling over 
an extended period TL .. While various PV forecasting approaches could potentially 
be employed, including artificial intelligence-based methods [9], these forecasting 
models typically demonstrate significantly degraded accuracy at sub-minute resolu-
tions. Consequently, the coarse-grained time resolution �tL . is set to 15 minutes to 
maintain forecast reliability while ensuring effective scheduling. 

The fine-grained time scale addresses rapid system dynamics, specifically focus-
ing on real-time battery control for energy balancing. This scale utilizes demand 
schedules from the coarse-grained optimization to compute precise battery oper-
ations over a shorter period TS .. The fine-grained time resolution �tS . must be 
maintained at the second level to effectively manage rapid system variations. This 
requirement stems from two fundamental physical constraints: first, PV systems 
and batteries exhibit electrical time constants of several seconds; second, PV output 
variations are determined by changes in solar irradiance and PV cell temperature, 
which respond to environmental factors such as cloud movement and wind speed 
with time constants typically in the order of several seconds [18, 22]. 

The multi-time scale approach is essential for three primary reasons: First, it 
respects the natural time constants of different system components, from rapid 
PV fluctuations to slower demand variations. Second, it maintains computational 
tractability by matching optimization time scales to forecast accuracy capabilities.
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Third, it enables coordinated control across temporal domains by integrating 
multiple control objectives into a unified optimization framework, rather than 
treating them as independent problems. 

5.3.4 System Model for Smart PV System 

This section describes a detailed explanation of a smart PV system and mathematical 
formulation. 

5.3.4.1 Overview of Smart PV System 

In this study, we define a smart PV system as a PV-driven energy community 
integrating multiple buildings and households. Figure 5.4 illustrates the system 
architecture, where PV panels and a Li-ion battery system constitute the primary 
energy components. The battery system provides electrical energy under two 
conditions: when PV generation is insufficient to meet demand, or when the EMS 
determines that battery discharge is more economical than energy purchased. 

The electrical loads are categorized into two types based on their operational 
flexibility. Non-shiftable appliances, such as refrigerators and lighting systems, 
require uninterrupted operation with fixed start times. In contrast, shiftable appli-
ances, including washing machines and dishwashers, allow temporal flexibility in 
their operation, enabling optimization of their start times within specified intervals. 

Fig. 5.4 Schematic diagram of smart PV system with mathematical symbols
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During periods of energy deficit, the system procures electricity from the utility 
grid. To maintain grid stability, the system operates under a no-export constraint, 
prohibiting reverse power flow to the grid. Surplus energy is primarily directed to 
the battery system and managed loads; any remaining excess is dissipated through 
dedicated power dissipation components, denoted as “Wasted” in Fig. 5.4. 

The EMS implements centralized monitoring and control across all system 
components through a networked architecture. This configuration enables real-time 
data acquisition and facilitates information exchange, including meteorological data 
and component states. The control system optimizes the operation of both shiftable 
appliances and the battery system to balance PV generation with demand, while 
adhering to user-defined operational constraints. 

The smart PV system can be mathematically formulated through energy balance 
equations and operational constraints. The fundamental energy conservation equa-
tion, which must be satisfied at all time steps t , is expressed as 

.St + Gt + Et = Dbase
t + D

shf t
t + Yt , ∀t (5.1) 

where St . represents energy purchased from the utility grid, Gt . denotes PV energy 
production, and Et . indicates battery system energy, which is positive for charging 
and negative for discharging. The terms Dbaset . and Dshf t t . represent the energy 
consumption of non-shiftable and shiftable appliances, respectively, while Yt . 

denotes energy wasted within the system. 
The system operates under non-negativity constraints for grid purchases St . and 

energy dissipation Yt .: 

.0 ≤ St , ∀t . (5.2) 

0 ≤ Yt . ∀t (5.3) 

While this formulation captures the essential components for analyzing PV 
forecasting and battery modeling impacts on EMS performance, the framework 
maintains extensibility. Additional distributed energy resources (such as wind 
turbines and electric vehicles) can be incorporated through appropriate mathemat-
ical models. Furthermore, the framework can accommodate thermal management 
objectives, as demonstrated in [45], where similar principles are applied to air 
conditioning control. 

5.3.4.2 Detailed Physics and Neural Network-Based PV Forecasting 
Model 

PV generation exhibits significant fluctuations due to meteorological phenomena, 
necessitating precise forecasting for effective energy management. This work 
employs a comprehensive PV nowcasting model, detailed in Chap. 2, which inte-
grates three key components: all-sky camera imagery, physics-based thermal models 
of PV systems [17], and deep neural network architectures.
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The forecasting system operates at two distinct temporal resolutions to address 
different control requirements. For short-term control, the model generates predic-
tions at 1-second intervals over a 15-minute horizon, with system states updated 
every minute. This high temporal resolution enables precise battery scheduling 
while maintaining computational feasibility. Note that, for longer-term planning 
horizons spanning multiple days, the framework utilizes coarse-grained PV fore-
casts derived from meteorological data. 

5.3.4.3 Shiftable Appliance Model 

The operation of shiftable appliances is characterized by four key parameters 
[35]: (1) operating time; (2) configuration time (T conf

.), which indicates when 
the appliance is available for use; (3) deadline (T dead

.), the latest time by which 
the appliance must complete its operation; and (4) energy profiles that detail the 
appliance’s energy consumption during operation. The configuration and deadline 
times are considered user preferences, which means that shiftable appliances must 
be scheduled to operate within the time window defined by these parameters. 
Shiftable appliances will start their operation based on the optimized schedule 
obtained by the proposed framework. 

The mathematical formulation captures detailed operational characteristics of 
each appliance through a multi-phase model, instead of using a single value for 
appliance power consumption. Each appliance’s operating cycle is discretized 
into P distinct phases, where m and p denote the appliance and phase indices, 
respectively. The model employs two sets of binary variables: qm,p,t . representing 
operational states (1 if appliance m is in phase p at time t , 0 otherwise), and rm,p,t . 

indicating phase completion status (1 if phase p of appliance m is completed at time 
t , 0 otherwise).

.

D
shf t
t =

M∑

m=1

P∑

p=1

qm,p,t · D
app
m,p, ∀t

qm,p,t + rm,p,t ≤ 1, ∀m,p, t

qm,p,t−1 − qm,p,t ≤ rm,p,t , ∀m,p, 2 ≤ t ≤ T

rm,p,t−1 ≤ rm,p,t , ∀m,p, 2 ≤ t ≤ T

qm,p,t ≤ rm,p−1,t , ∀m, t, 2 ≤ p ≤ P

rm,p−1,t − rm,p,t = qm,p,t , ∀m, t, 2 ≤ p ≤ P

T∑

t=1

qm,p,t = 1, ∀m,p

qm,p,t = 0, ∀m,p, 1 ≤ t ≤ T
conf
m , T dead

m ≤ t ≤ T

(5.4)
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where D
app
m,p . represents the energy consumption of appliance m during phase p. 

This formulation serves two primary functions: it calculates the aggregate energy 
consumption of shiftable appliances and enforces operational constraints including 
sequential phase execution and user-defined timing preferences. The optimization 
problem is solved within the coarse-grained time scale of the framew ork.

5.3.4.4 Equivalent Circuit-Based Accurate Battery Model 

Precise battery modeling is essential for effective energy management system imple-
mentation. This work develops a detailed battery module based on an equivalent 
circuit model [8] that captures nonlinear SOC dynamics and energy losses. This 
approach addresses limitations of conventional linear models discussed in Sect. 5.2, 
which oversimplify the relationship between energy loss and charging/discharging 
processes. 

The battery module architecture, shown in Fig. 5.5, consists of identical cells 
in series-parallel configuration, where Ns . and Np . represent the number of series 
and parallel cells, respectively. The equivalent circuit model has demonstrated high 
accuracy in representing nonlinear I-V characteristics and temporal behavior [8]. 

Figure 5.6 presents the detailed equivalent circuit model comprising two main 
sections. The left section characterizes the battery’s state-of-charge (SOC) dynamics 
through a voltage source VSOC . that represents the stored energy level, ranging from 
0.0 to 1.0 (0% to 100% charge). The terminal current Ibatt . follows the conventional 
sign convention: positive for discharge and negative for charge operations. The 
battery module consists of Ns . cells connected in series and Np . parallel strings to 
achieve the desired voltage and capacity ratings. The nominal capacity Cnom . scales 
with the number of parallel strings: 

.Cnom = Np · Ccell . (5.5) 

where Ccell . represents the capacity of an individual cell. The temporal evolution of 
SOC is governed by 

Fig. 5.5 Battery module 
configuration composed of 
Ns . series cells and Np . 
parallel cells ･･

･
･･
･

･･
･

･････ ･ ･･ ･ ･･ ･

＋

－

Cell 

cells in series 

ce
ll

s 
in

 p
ar

al
le

l 

Battery module



5 Multi-Timescale Energy Management Framework 89

+

Fig. 5.6 Electrical diagram of equivalent circuit-based battery model composed of Ns ×Np . cells 

.SOCt+1 = SOCt −
∫ t+1

t

Ibatt

Cnom

dt. ∀t (5.6) 

The right section captures the battery’s transient response characteristics through 
two parallel RC networks, which model the dynamic voltage behavior at different 
time scales. This dual-time-constant approach is essential for accurately repre-
senting both rapid and gradual voltage changes during charging and discharging 
operations. The model incorporates five key SOC-dependent parameters. The open 
circuit voltage VOC . represents the battery’s equilibrium potential at a given state of 
charge, while the series resistance RS .captures the instantaneous voltage drop during 
current flow. The short-term network (RT S ., CT S .) models rapid voltage dynamics 
with time constants typically in the order of seconds, whereas the long-term network 
(RT L ., CT L .) represents slower voltage transitions with time constants in the order of 
minutes. 

These parallel RC networks are particularly crucial for modeling the battery’s 
dynamic voltage response to current variations. The short-term network primarily 
captures immediate voltage recovery effects, while the long-term network accounts 
for prolonged relaxation phenomena. The SOC-dependent behavior of these param-
eters is characterized by 

. VOC = a1 · exp(a2 · SOC) + a3

+ a4 · SOC + a5 · SOC2 + a6 · SOC3, . (5.7) 

RS = a7 · exp(a8 · SOC) + a9, . (5.8) 

RT  S  = a10 · exp(a11 · SOC) + a12, . (5.9) 

RT  L  = a16 · exp(a17 · SOC) + a18, . (5.10) 

CT  S  = a13 · exp(a14 · SOC) + a15, . (5.11) 

CT  L  = a19 · exp(a20 · SOC) + a21, (5.12)
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where {an,∀n = 1...21.} is the set of the battery cell coefficients, which are derived 
from the literature [8]. Terminal voltage Vbatt . and charging/discharging energy E 
are given by

.Vbatt = Ns · VOC − Ibatt · Ns · RS

Np

− UT S − UT L, . (5.13) 

E = Ibatt · Vbatt /1000, (5.14) 

where UT S . and UT L . represent the voltage sources of the left parallel RC branch and 
the right one, respectively. These values are calculated as follows: 

.
dUT S

dt
= − UT S

RT S · CT S

+ Ibatt · Ns

Np · CT S

, . (5.15) 

dUT  L  
dt 

= − UT  L  
RT  L  · CT  L  

+ Ibatt · Ns

Np · CT L

. (5.16) 

While this comprehensive model is utilized in system simulation to accurately 
estimate battery states including SOC transitions and voltage responses, a simplified 
version is employed in the optimization framework to maintain computational 
tractability. The complete equivalent circuit model serves as a high-fidelity simu-
lation model for validating system behavior and evaluating control performance, 
whereas the simplified model, detailed in subsequent sections, provides an efficient 
representation for real-time optimization while preserving essential battery charac-
teristics. 

5.4 Formulation of Proposed Optimization Flow 

This section presents the mathematical formulation of the multi-time scale optimiza-
tion framework, detailing both its structure and solution methodology. 

5.4.1 Overview of Control Flow 

The proposed framework implements a hierarchical optimization approach to 
minimize electricity costs in smart PV systems through coordinated scheduling 
of shiftable appliances, battery operations, and energy purchased. Building on the 
multi-time scale structure introduced in Sect. 5.3.3, the framework employs MPC 
across different temporal resolutions. 

Figure 5.7 illustrates the framework’s control flow, where multiple optimization 
problems are solved sequentially at intervals of �t .. The optimization hierarchy
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Fig. 5.7 Block diagram of control flow in proposed multi-time scale framework 

begins with the coarse-grained time scale, addressing two primary problems: 
appliance scheduling (AS) and coarse-grained energy management (CGEM). The 
AS stage determines optimal timing for shiftable loads, while CGEM computes 
battery system reference trajectories using these appliance schedules as inputs. The 
CGEM incorporates the equivalent circuit battery model to minimize energy losses. 
Both stages operate over extended planning horizons to capture daily variations in 
energy profiles and usage patterns. 

The fine-grained time scale subsequently addresses rapid system dynamics 
through the fine-grained energy management (FGEM) problem. This stage utilizes 
solutions from the coarse-grained optimization along with short-term PV forecasts 
detailed in Sect. 5.3.4 to generate precise battery charge/discharge schedules. The 
resulting control actions are evaluated through detailed system simulation using the 
complete battery model. Mathematical formulations for each optimization stage are 
presented in subsequent sections.
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5.4.2 Appliance Scheduling 

The AS problem operates on the coarse-grained time scale with planning period TL . 

and resolution �tL .. The problem is formulated as a MIP optimization to accom-
modate binary decision variables representing appliance states. The mathematical 
formulation is expressed as 

.minimize
TL∑

tL=1

ξtL · StL, (5.17) 

subject to (5.1)–(5.6), (5.14), 

input 

{GtL ,  Dbase 
tL ,  ξtL}, ∀tL 

decision variables 

{StL ,  YtL ,  Ibatt,tL ,  q  m,p,tL , rm,p,tL}, ∀m,p, tL

where ξtL . denotes the time-varying electricity price. To maintain computational 
tractability while handling integer variables, the formulation employs a simplified 
battery model that omits nonlinear characteristics of the equivalent circuit. Specifi-
cally, the terminal voltage Vbatt . is approximated as a constant nominal value, and the 
nonlinear equations (5.7)–(5.12), (5.15), and (5.16) describing transient responses 
and complex I-V characteristics are excluded from the optimization. 

The AS solution yields schedules for appliance operation (Dshf t tL ., qm,p,tL .), 
energy purchase ( StL .), battery operation (Ibatt,tL .), and wasted energy ( YtL .). Only 
the appliance schedules are retained for implementation, while other variables are 
recomputed in subsequent optimization stages where the complete battery model is 
incorporated. This hierarchical approach enables practical computation of appliance 
schedules while ensuring accurate representation of battery dynamics in later stages. 

5.4.3 Coarse-Grained Energy Management (CGEM) 

The CGEM constitutes the outer control loop for battery scheduling, operating at the 
same temporal resolution as the AS stage. This formulation incorporates nonlinear 
battery characteristics while employing strategic simplifications for computational 
efficiency. The capacitive elements (CT S . and CT L .) are excluded from the model 
as their time constants (20 seconds to 4 minutes) are significantly shorter than the 
coarse-grained time scale. The resistive components are consolidated into a total 
resistance Rtotal ., yielding
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.Rtotal = RS + RT S + RT L, . (5.18) 

Vbatt = Ns · VOC − Ibatt · Ns · Rtotal

Np

. (5.19) 

The resulting nonlinear programming (NLP) problem, which retains the nonlinear 
equations (5.7)–(5.10), is formulated as 

.minimize
TL∑

tL=1

ξtL · StL, (5.20) 

subject to (5.1)–(5.3), (5.5)–(5.10), (5.14),(5.18),(5.19), 

input 

{GtL ,  Dbase 
tL ,  D  shf t 

tL ,  ξtL}, ∀tL 

decision variables 

{St L, YtL, Ibatt,tL}, ∀tL

While maintaining the same objective of electricity cost minimization, the 
CGEM generates more accurate schedules than the AS by incorporating battery 
nonlinearities. The solution encompasses battery operation, purchased energy, and 
wasted energy schedules. To facilitate fine-grained control, reference energy values 
Eref

. are computed from the CGEM solution: 

.Eref = 1

1000
· I batt

1 · V batt
1 · �tS

3600
. (5.21) 

These reference points guide the subsequent FGEM optimization, ensuring bal-
anced battery utilization rather than myopic responses to instantaneous renewable 
generation. 

5.4.4 Fine-Grained Energy Management (FGEM) 

The FGEM implements the inner control loop for managing rapid PV generation 
fluctuations through battery control. Operating with a planning period TS . of 15 
minutes, which matches the coarse-grained time resolution �tL ., this stage ensures 
temporal consistency across the optimization hierarchy. 

The FGEM utilizes the appliance schedule D
shf t
tS

. from the AS stage while imple-
menting the complete equivalent circuit model to capture fast battery dynamics. 
To maintain coherence with the coarse-grained solution while allowing for local 
adjustments, the battery output trajectory is constrained relative to the reference 
energy Eref

. by



94 D. Watari et al.

.EtS − Eref ≤ ε · |Eref |, ∀tS (5.22) 

where ε . represents the acceptable error from Eref
. and its typical value is 5%. 

The FGEM problem results in NLP problem since it includes the nonlinear parts 
of the battery model. Finally, the mathematical formulation of the FGEM is given 
by 

.minimize
TS∑

tS=1

ξtS · StS , (5.23) 

subject to (5.1)–(5.3), (5.5)–(5.16),(5.22), 

input 

{GtS ,  Dbase 
tS ,  D  shf t 

tS ,  ξtS ,  Eref }, ∀tS 

decision variables 

{StS , YtS , Ibatt,tS }. ∀tS

This formulation maintains the objective of electricity cost minimization while 
determining optimal battery schedules and energy management strategies. The 
framework evaluates the optimization solutions through detailed system simulation 
incorporating the complete equivalent circuit model, which captures both slow 
and fast battery dynamics. Specifically, the simulation implements all nonlinear 
components including the dual RC networks that model transient responses, SOC-
dependent parameters, and voltage characteristics described by Eqs. (5.7)–(5.16). 
This comprehensive simulation step is essential for two primary reasons: first, 
internal battery states such as SOC transitions and voltage responses cannot be 
directly measured in practical systems; second, the interactions between fast battery 
dynamics and PV fluctuations need to be accurately assessed. The simulation 
enables quantitative evaluation of the battery’s dynamic behavior, including valida-
tion of SOC evolution, verification of voltage constraints, and assessment of energy 
losses under the computed control actions. This detailed validation ensures that the 
simplified models used in the optimization stages do not compromise the practical 
feasibility of the derived control strategies. 

5.5 Simulation Experiments 

This section presents key simulation experiments with practical assumptions to 
demonstrate the efficacy of the proposed framework. The experimental setup is 
first described, followed by an exploration of the parameter effects of the proposed 
method. Additionally, the impact of battery size and PV forecasting error on system
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performance is investigated. Finally, a performance comparison regarding electricity 
costs with other baseline methods is conducted. 

5.5.1 Simulation Setup 

For all simulation experiments, the simulation period is set to 10 days, beginning at 
midnight. The parameters of the proposed method are outlined below. The coarse-
grained time scale covers a 24-hour planning period (TL = 96. [900s]) with a 15-
minute resolution (�tL = 900. [s]). In contrast, the fine-grained time scale covers a 
15-minute planning period (TS = 900. [s]) with a 1-second resolution (�tS = 1. [s]). 

The commercial solver CPLEX v20.1 is used to solve the AS problem, which is a 
MIP optimization problem. Additionally, the open-source NLP solver IPOPT v3.14 
[41] is employed to solve the CGEM and FGEM problems, which are formulated as 
NLP problems. The simulations are run on a modern laptop equipped with 16 GB 
RAM and Intel Core-i7 6600U CPU operating at 2.60 GHz. 

The parameters of the battery system are listed in Table 5.1. The coefficients 
an,∀n = 1...21. are sourced from the literature [8]. The acceptable error between 
the battery outputs of the CGEM and FGEM, denoted as ε ., is set to 5%. A time-of-
use (TOU) pricing scheme commonly used in Japan is applied as input, with a rate 
of 21.66 ¥/kWh during peak hours (7 a.m.–11 p.m.) and 10.7 ¥/kWh during off-peak 
hours (11 p.m.–7 a.m.) [20]. 

PV generation data was measured and collected with a 1-second resolution from 
June to July 2015 at the University of Oldenburg [2]. For the simulations, data 
from June 18 to 27 (a 10-day period) is selected as input, as illustrated in Fig. 5.8. 
To simulate a 15 kWp PV system, the PV generation profiles are amplified by a 
constant scaling factor. It is important to note that the weather during these simulated 

Table 5.1 Parameter settings of battery system 

Description Symbol Value 

Initial SOC SOCinit . 0.5 (50%) 

Terminal SOC SOCterm . 0.5 (50%) 

Min. SOC SOC . 0.2 (20%) 

Max. SOC SOC . 1 (100%) 

Min. current Ibatt . − 0.5 · Cnom . (50% of capacity) 

Max. current Ibatt . 0.5 · Cnom . (50% of capacity) 

Number of series cells Ns . 25 

Number of parallel cells Np . 191 

Nominal voltage Vcell . 4.1 [V] 

Nominal capacity Ccell . 0.85 [Ah] 

Battery capacity – 15 [kWh]
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Fig. 5.8 PV generation used in simulation, measured at the University of Oldenburg from June 18 
to July 27 

Table 5.2 Parameters for smart appliances, washing machine, tumble dryer, and dishwasher 

Appliance Total energy Operating time Configuration time Shiftable time 

Washing machine 0.22 kWh 45 min 8 a.m.–10 a.m. 7  h  

Tumble dryer 1.86 kWh 75 min 8 a.m.–10 a.m. 7  h  

Dishwasher 1.88 kWh 75 min 12 p.m.–15 p.m. 8  h  

days was predominantly cloudy, which tends to cause significant fluctuations 
in PV generation and makes accurate PV forecasting more challenging. Due to 
these cloudy conditions, high forecasting errors are expected in this simulation, 
representing a worst-case scenario and demonstrating the worst-case performance 
of the proposed method. For PV forecasting, the PV nowcasting model [2] is utilized 
to obtain fine-grained PV generation forecasts, which show an average forecasting 
error of 12%, even under cloudy conditions. Since this work does not implement 
a specific forecasting model for the coarse-grained time scale, the coarse-grained 
PV forecast is manually generated by adding Gaussian-distributed errors to the 
measured profiles, resulting in an average error of 20%. 

The demand profiles of non-shiftable appliances are derived from the Dutch 
Residential Energy Dataset (DRED) [39], which was collected with a 1-second 
resolution from July to December 2015. For the simulation, demand profiles 
spanning 10 days are extracted from DRED, specifically from July 5 to July 14. 
These profiles are scaled up by a constant factor, resulting in an average daily 
consumption of non-shiftable appliances set to 50.1 kWh. The parameters for 
shiftable appliances are detailed in Table 5.2, which includes three types of shiftable 
appliances, dishwashers, washing machines, and tumble dryers, each operated once 
per day. There are 4 appliances of each type, totaling 12 shiftable appliances. The 
configuration times for these appliances are randomly generated within the ranges 
specified in Table 5.2. The deadlines for appliance operation are determined by 
adding the shiftable time to the configuration time. The dataset [34] provides power 
profiles for shiftable appliances with a 1-second resolution. Representative examples 
of the power profiles for a washing machine, tumble dryer, and dishwasher are 
shown in Figs. 5.9 and 5.10, respectively.
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Fig. 5.9 Power profiles of washing machine ( − 3000. s) and tumble dryer (3000–7500 s) 

Fig. 5.10 Power profiles of dishwasher 

5.5.2 Results 

5.5.2.1 Comparison with Baseline Scheduling Methods 

To evaluate the efficacy of appliance and battery scheduling, this section compares 
the proposed framework to several baseline methods, described as follows: 

1. Using Shiftable Appliances As Soon As Possible (ASAP): In this method, 
shiftable appliances are not scheduled through optimization. Instead, appliances 
are immediately turned on as soon as their configuration time arrives. The battery 
system schedules are optimized using the CGEM and FGEM.
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Table 5.3 Electricity cost and its improving rates of proposed method within 10 days compared 
to three methods, ASAP, NBS, and ASAP-NBS 

Method Proposed ASAP NBS ASAP-NBS 

Electricity cost within 10 days [¥] 3004 3319 4408 5784 

Improving rate of electricity cost of proposed – 9.5% 31.9% 48.1% 

Table 5.4 Electricity cost and computational time for different lengths of planning period 

Planning period [h] Computational time [s] 

TL . Electricity costs [¥] AS CGEM FGEM 

6 3194 0.95 0.19 3.11 

12 3106 1.63 0.27 3.03 

24 3004 4.32 0.43 3.51 

36 3044 8.65 0.63 3.12 

48 3055 17.59 0.94 3.24 

2. No Battery Scheduling (NBS): In this approach, the CGEM and FGEM are 
excluded from the proposed method. Only the AS stage is employed, and the 
battery system operates on a fixed schedule, charging at a constant C-rate of 10% 
from 11 p.m. to 7 a.m. and discharging at a constant C-rate of 5% from 7 a.m. to 
11 p.m. 

3. ASAP-NBS: This method combines the principles of ASAP and NBS, resulting 
in no optimization problem being solved. 

Table 5.3 presents the results of electricity costs over a 10-day period, along with 
the improvement rates of the proposed framework compared to other methods. The 
proposed framework achieved the lowest electricity cost among all methods, with 
a maximum improvement rate of 48.1%. Appliance scheduling effectively helps to 
bridge the energy gap between generation and demand, leading to reduced elec-
tricity costs. Battery scheduling also plays a crucial role in minimizing electricity 
costs. When the battery system is charged and discharged at a constant current, as 
in the NBS method, it cannot effectively balance renewable generation and demand, 
resulting in increased energy purchases to meet energy requirements. 

5.5.2.2 Effect of Planning Period on Coarse-Grained Time Scale 

In this section, the effect of the planning period on the coarse-grained time scale 
is investigated. For the proposed method, the planning period TL . is varied from 6 
hours to 48 hours. 

Table 5.4 shows the electricity costs over a 10-day period and the average 
computational time for each optimization problem. As seen in the table, electricity 
costs decrease as the planning period increases up to 24 hours but begin to rise
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Table 5.5 Average AS’s 
computational time for 
different numbers of smart 
appliances 

Shiftable appliances per day Computational times of AS [s] 

6 2.13 

12 4.32 

18 6.67 

24 8.79 

30 10.39 

when the planning period exceeds 24 hours. This trend is due to changes in the 
battery schedule solutions for the 36-hour and 48-hour planning periods. The SOC 
of the battery at the end of the 10-day simulation is 53.1% when using a 24-hour 
planning period. However, the SOC increases to 65.1% and 65.8% when using 36-
hour and 48-hour planning periods, respectively. This indicates that with longer 
planning periods, more energy remains stored in the battery. Additionally, when a 
36-hour or 48-hour planning period is used, some shiftable appliances on the last day 
are scheduled outside the evaluation period. In contrast, using a 24-hour planning 
period allows these appliances to be scheduled within the same day. 

Furthermore, computational time increases as the planning period becomes 
longer. For the 48-hour planning period, the computational time for the AS problem 
increases significantly due to the need to schedule more smart appliances. However, 
the total computational time remains much less than the length of the time resolution 
�tL = 900. [s], indicating that the proposed framework is applicable for all 
simulated planning periods. In this case study, a 24-hour planning period is the most 
efficient, achieving a good balance between computational complexity and solution 
quality. 

5.5.2.3 Effect of Number of Smart Appliances 

Next, the impact of the number of smart appliances on computational time was 
examined. The number of each type of smart appliance was increased from 2 to 
10, resulting in a total of 6 to 30 appliances. Table 5.5 presents the average com-
putational time for each optimization problem, which increases as more appliances 
are added. However, the computational time remains sufficiently short, consistently 
meeting the requirements of �tL = 900. [s]. Therefore, the proposed framework is 
applicable to smart PV systems comprising multiple buildings with up to 30 or more 
smart appliances. 

5.5.2.4 Effect of PV Forecasting Error and Battery Size 

In this section, the system performance was analyzed under different battery sizes 
and PV forecasting errors. Various coarse-grained forecasts of PV generation were
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Table 5.6 Electricity cost values in ¥with different PV forecasting errors and battery capacities 

Forecasting scheme for coarse-grained 

Battery Energy forecasting (error <12%) Power forecasting (error <20%) 

capacity Perfect Forecast error for fine-grained Forecast error for fine-grained 

[kWh] forecasting 20% 30% 40% 20% 30% 40% 

3 3450 3558 3529 3579 3610 3570 3612 

6 3146 3309 3292 3360 3437 3404 3477 

9 3025 3181 3227 3272 3334 3381 3420 

12 2821 3037 3118 3171 3202 3289 3353 

15 2739 3004 3094 3185 3182 3271 3379 

18 2719 3027 3092 3205 3193 3281 3384 

employed, with average forecasting errors of 20%, 30%, and 40%. For the fine-
grained time scale, two different forecasting schemes were compared, energy 
forecasting [2] and power forecasting, both of which were also presented in [2]. The 
average forecasting error for the 15-minute periods was 12% for energy forecasting 
and 20% for power forecasting. Additionally, to assess the impact of perfect 
forecasting, a scenario with a forecasting error of 0% was included, assuming the 
PV forecast method works ideally. The battery capacity was varied from 3 kWh to 
18 kWh to investigate the effect of battery size on system performance. 

Figure 5.11 shows the electricity costs over a 10-day period with varying PV 
forecasting errors and battery capacities. The corresponding electricity cost values 
are provided in Table 5.6.  In  Fi  g. 5.11, the black line represents the electricity costs 
under perfect forecasting conditions. The blue and red lines indicate the results 
of power forecasting and energy forecasting, respectively. As illustrated by these 
results, electricity costs do not significantly improve when the battery capacity 
exceeds 12 kWh. This is because errors in predicting future PV generation profiles 
have a substantial impact on performance as battery size increases. In other words, 
incorrect battery operation due to PV forecasting errors offsets the benefits of 
reduced electricity costs achieved by a larger battery capacity. From the perspective 
of high initial costs, opting for a larger battery size may not be advisable. 

The forecasting error on the coarse-grained time scale has a significant impact 
on electricity costs. Specifically, smaller forecasting errors result in lower electricity 
costs. The impact of coarse-grained forecasting errors on electricity costs is minimal 
when the battery capacity is 3 or 6 kWh. However, when the battery capacity 
exceeds 9 kWh, the difference in electricity costs between varying forecasting errors 
becomes more pronounced. Furthermore, the effect of fine-grained PV forecasting 
errors on electricity costs is greater than that of coarse-grained errors. A 10% 
improvement in fine-grained forecasting accuracy can lead to a 30–50% reduction 
in required battery size to achieve similar electricity cost savings. Therefore, the 
accuracy of the forecasting scheme for the fine-grained time scale is a crucial factor 
in the performance of the EMS.
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Fig. 5.11 Electricity costs within 10 days for different scenarios of PV forecasting errors and 
different battery capacities, where the value is the ratio between forecasting error in coarse-grained 
and scheme in fine-grained 

5.5.2.5 Effect of Multi-Time Scale Structure 

To determine the necessity of the multi-time scale structure, the proposed framework 
was compared to two single-time scale methods: 

1. Only Coarse-grained Optimization (OC): In this method, only the AS and 
CGEM are executed on the coarse-grained time scale. The solution is directly 
applied to the system without solving the FGEM. OC utilizes a 24-hour planning 
period with a 15-minute resolution. 

2. Only Fine-grained Optimization (OF): This approach only executes the FGEM 
on the fine-grained time scale. Smart appliances are operated as soon as possible, 
similar to the ASAP method, and the CGEM is not used. OF operates with a 
15-minute planning period and a 1-second resolution. 

Note that the parameters of OC and OF, namely, the planning period and time 
resolution, are chosen based on the characteristics of the available PV forecasting 
methods. As mentioned in Sect. 5.3.3, the accuracy of long-term PV forecasting
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Table 5.7 Comparison of electricity cost and its improving rate for proposed method, OC, and OF 

Method Proposed OC OF 

Electricity cost for 10 days [¥] 3004 3183 5717 

Improving rate of electricity costs of Proposed – 5.6% 47.5% 

Fig. 5.12 SOC profiles of June 18 for three methods, Proposed, OC, and OF, with 15 kWh battery 
system 

Discharging 

Charging 

Fig. 5.13 Battery power profiles of June 18 for three methods, Proposed, OC, and OF, with 15 
kWh battery system; Positive value represents discharging, otherwise charging 

decreases significantly when the time resolution is less than a few minutes (e.g., 
less than 5 minutes) [9]. Conversely, short-term PV forecasting, which is based 
on sky images and physics-based models, can provide accurate profiles with a 1-
second resolution; however, its accuracy degrades rapidly when the forecasting 
period extends beyond 15 minutes [2]. To align the target time scales with each 
PV forecasting approach and perform the comparative experiment under realistic 
assumptions, the parameters of OC and OF are set as described above. 

Table 5.7 presents the results of electricity costs over a ten-day period and the 
improvement rate of the proposed method compared to the OC and OFmethods. The 
proposed framework achieved the best performance, with a maximum improvement 
rate of 47.5% in electricity costs. This result demonstrates the effectiveness of the 
multi-time scale structure in reducing electricity costs. 

Figures 5.12 and 5.13 show the SOC profiles and battery power profiles for the 
same day. The results for the OF method clearly demonstrate myopic optimization,
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where the battery system is discharged to reduce electricity costs as long as there 
is energy remaining in the battery. Since OF only considers the upcoming 15 
minutes ( TS .) without incorporating the coarse-grained time scale, its solution is not 
optimized for long-term changes in PV generation and demand load. In comparison, 
the proposed method achieves a higher SOC level than both the proposed method 
and OC. While OC provides a solution that accounts for long-term changes in 
energy profiles, accumulated errors due to PV fluctuations on the fine-grained time 
scale result in fewer opportunities to charge the battery using PV generation. On 
the other hand, the battery solution of the proposed framework considers long-
term changes by adhering to reference values from the coarse-grained time scale 
and compensates for rapid PV fluctuations by solving FGEM with fine-grained PV 
forecasting data. 

Overall, the multi-time scale structure leads to superior performance in energy 
management. The proposed framework primarily focuses on managing the fast 
and slow dynamics of PV generation and the battery system. Although energy 
demand is also highly volatile, its fluctuations occur over many minutes, which is 
distinct from the time scales of PV generation and the battery system. Consequently, 
fluctuations in energy demand can be effectively managed within the coarse-grained 
optimization loop of the multi-time scale approach. As indicated by the simulation 
results, the quick response of battery charging and discharging allows the system to 
efficiently handle energy demand fluctuations. 

5.6 Summary 

This chapter presented a multi-time scale energy management framework for a 
smart PV system. An MPC strategy, using PV generation forecasting as input, was 
adopted to address the high fluctuations in PV generation. The proposed framework 
employs a multi-time scale structure, comprising both coarse-grained and fine-
grained time scales. For the coarse-grained time scale, the framework optimizes 
the schedules of smart appliances to adjust their operating times and optimizes 
battery outputs to manage daily changes in the energy balance. For the fine-grained 
time scale, the battery system schedule is fine-tuned by incorporating an accurate 
battery model and a fine-grained PV forecasting model. The proposed framework 
effectively solves three internally connected optimization problems, considering 
both fast and slow system dynamics. Simulation results indicate that the proposed 
framework can reduce electricity costs by up to 47.5% compared to baseline 
methods across various scenarios. Additionally, the impact of PV forecasting error 
and battery capacity on the framework’s performance was analyzed. The results 
suggest that integrating an accurate PV forecasting model could further reduce 
electricity costs, even with a smaller battery system. In summary, the proposed 
framework provides the EMS with real-time control capabilities, resulting in a 
highly accurate solution and enabling a reduction in the size of an expensive battery 
system.
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Future work should address several key limitations of the current framework. A 
primary area for enhancement is the incorporation of workload-dependent battery 
dynamics. The current framework does not account for critical battery character-
istics such as degradation patterns and complex SOC variations. These battery 
dynamics typically exhibit time constants at the minute level, substantially longer 
than the 1-second resolution employed in the fine-grained time scale. To address 
this  limitation,  an  intermediate  time  scale  –  a  semi-fine-grained level operating at 
minute-level resolution with planning periods exceeding 1 hour – will be considered.
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Glossary 

E
(t)
k . Objective function value at state k during step t of SAMURAI

E
(t)
ref . Reference objective function value at step t of SAMURAI

F(·). Cumulative distribution function used for CRPS calculation 
M(t)

. Total number of explored states at step t of SAMURAI
N

(t)
k . Number of states explored up to state k at step t of SAMURAI

N
(t)
k,uphill . Number of uphill states explored up to state k at step t of SAMURAI

T (t)
. Temperature value at step t during annealing with SAMURAI

ci . Binary parameter indicating whether target value i lies inside the 
corresponding PI

c1 ., c2 . Acceleration constants for velocity update during optimization with 
PSO 

cl Confidence level of PIs 
gbest . Best position explored in swarm during optimization with PSO 
h Constant used for CWC calculation 
l(·). Heaviside function used for CRPS calculation 
li . Lower bound of PI generated for sample i 
pbest,n . Best position explored by particle n during optimization with PSO
ui . Upper bound of PI generated for sample i 
vn(t). Velocity of particle n at step t of PSO
w Inertia weight for velocity update during optimization with PSO 
xn(t). Position of particle n at step t of PSO
α(t)

. Temperature ratio between step t and step t − 1. during annealing with 
SAMURAI 

β . SAMURAI meta-parameter that controls interface of hybrid algorithm 
SAMURAI-Adam 

γ . Binary parameter used for CWC calculation 
δ . SAMURAI meta-parameter that controls granularity of search 
St . The purchased energy from the grid at time t 
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Gt . PV energy production at time t 
Et . The charging/discharging energy of the battery system at time t 
Dbase

t . Energy consumption of the non-shiftable appliances at time t 
D

shf t
t . Energy consumption of smart appliances at time t 

Yt . Energy wasted inside the system at time t 
D

app
m,p . The consumed energy of appliance m in phase p

Cnom . Normal battery capacity 
Ccell . Battery cell capacity 
Np . The number of parallel-connected cells 
Ns . The number of serial-connected cells 
VOC . Battery open-circuit voltage 
Vbatt . Battery terminal voltage 
Ibatt . Battery current 
E Battery charging/discharging energy 
Rtotal . Total aggregated battery resistance 
TL . Appliance schedule planning period 
δtL . Time resolution 
ξt . The electricity price from the power company at time t 
Eref

. The reference values for battery energy 
ε . The acceptable error from Eref

. 

αt . Data collected from sensors for HVAC system. 
st . Control actions (thermostat set-points) at time-step t 
E(st , αt ). Energy consumption at time-step t 
C(st , αt ). Thermal comfort (PPD) at time-step t 
ω . Relevant importance of energy cost or thermal comfort improvement. 
T out

t . Outdoor temperature at time-step t 
Rt . Solar radiation at time-step t 
T in

t . Thermal Zone Indoor temperature at time-step t 
Ht . Thermal Zone Indoor Humidity at time-step t 
Cest . Estimated thermal comfort 
Creal . Actual thermal comfort 
Eest . Estimated energy consumption 
Ereal . Actual energy consumption
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HVAC control, 59–74 
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LIDAR-based forecasting, 38, 43, 48 

M 
Minute-scale energy yield forecasting, 8, 9, 
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Minute-scale production forecasting, 43 
Multi-timescale, 77–104 
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